These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 208520)

  • 1. Protein--immobilized lipid in dimyristoylphosphatidylcholine-substituted cytochrome oxidase: evidence for both boundary and trapped-bilayer lipid.
    Marsh D; Watts A; Maschke W; Knowles PF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):397-402. PubMed ID: 208520
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphatidylcholine exchange between the boundary lipid and bilayer domains in cytochrome oxidase containing membranes.
    Jost PC; Nadakavukaren KK; Griffith OH
    Biochemistry; 1977 Jul; 16(14):3110-4. PubMed ID: 196626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin-label studies of lipid immobilization in dimyristoylphosphatidylcholine-substituted cytochrome oxidase.
    Knowles PF; Watts A; Marsh D
    Biochemistry; 1979 Oct; 18(21):4480-7. PubMed ID: 227440
    [No Abstract]   [Full Text] [Related]  

  • 4. Evidence for phase boundary lipid. Permeability of Tempo-choline into dimyristoylphosphatidylcholine vesicles at the phase transition.
    Marsh D; Watts A; Knowles PF
    Biochemistry; 1976 Aug; 15(16):3570-8. PubMed ID: 182212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boundary lipid and fluid bilayer regions in cytochrome oxidase model membranes.
    Griffith OH; Jost P; Capaldi RA; Vanderkooi G
    Ann N Y Acad Sci; 1973 Dec; 222():561-73. PubMed ID: 4361869
    [No Abstract]   [Full Text] [Related]  

  • 6. ESR spin-label studies of lipid-protein interactions in membranes.
    Marsh D; Watts A; Pates RD; Uhl R; Knowles PF; Esmann M
    Biophys J; 1982 Jan; 37(1):265-74. PubMed ID: 6275924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid-protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes.
    Seelig A; Seelig J
    Hoppe Seylers Z Physiol Chem; 1978 Dec; 359(12):1747-56. PubMed ID: 216616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of spin-labelled cardiolipin with dimyristoylphosphatidylcholine-substituted bovine heart cytochrome c oxidase. A generalized specificity increase rather than highly specific binding sites.
    Powell GL; Knowles PF; Marsh D
    Biochim Biophys Acta; 1985 Jun; 816(1):191-4. PubMed ID: 2988613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for boundary lipid in membranes.
    Jost PC; Griffith OH; Capaldi RA; Vanderkooi G
    Proc Natl Acad Sci U S A; 1973 Feb; 70(2):480-4. PubMed ID: 4346892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid-substituted cytochrome oxidase: no absolute requirement of cardiolipin for activity.
    Watts A; Marsh D; Knowles PF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):403-9. PubMed ID: 208521
    [No Abstract]   [Full Text] [Related]  

  • 11. Lipid-protein and lipid-lipid interactions in cytochrome oxidase model membranes.
    Jost PC; Capadil RA; Vanderkooi G; Griffith OH
    J Supramol Struct; 1973; 1(4):269-80. PubMed ID: 4358439
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence for various degrees of motional freedom of the "boundary" lipid in cytochrome oxidase.
    Benga G; Porumb T; Frangopol PT
    Cell Biol Int Rep; 1979 Nov; 3(8):651-7. PubMed ID: 228872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and extent of fluid bilayer regions in membranous cytochrome oxidase.
    Jost P; Griffith OH; Capaldi RA; Vanderkooi G
    Biochim Biophys Acta; 1973 Jun; 311(2):141-52. PubMed ID: 4352245
    [No Abstract]   [Full Text] [Related]  

  • 14. Cytochrome c-induced increase of motionally restricted lipid in reconstituted cytochrome c oxidase membranes, revealed by spin-label ESR spectroscopy.
    Kleinschmidt JH; Powell GL; Marsh D
    Biochemistry; 1998 Aug; 37(33):11579-85. PubMed ID: 9708994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear magnetic resonance studies of lipid-protein interactions. A model of the dynamics and energetics of phosphatidylcholine bilayers that contain cytochrome c oxidase.
    Longmuir KJ; Capaldi RA; Dahlquist FW
    Biochemistry; 1977 Dec; 16(26):5746-55. PubMed ID: 201275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome c mediates electron transfer between ubiquinol-cytochrome c reductase and cytochrome c oxidase by free diffusion along the surface of the membrane.
    Froud RJ; Ragan CI
    Biochem J; 1984 Jan; 217(2):561-71. PubMed ID: 6320811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of cytochrome oxidase on lipid chain dynamics. A nanosecond fluorescence depolarization study.
    Kinosita K; Kawato S; Ikegami A; Yoshida S; Orii Y
    Biochim Biophys Acta; 1981 Sep; 647(1):7-17. PubMed ID: 6271207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. I. Binding of cytochrome c to cardiolipin/phosphatidylcholine membranes in the absence of oxidase.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):848-57. PubMed ID: 8842223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phospholipid composition and organization of cytochrome c oxidase preparations as determined by 31P-nuclear magnetic resonance.
    Seelig A; Seelig J
    Biochim Biophys Acta; 1985 May; 815(2):153-8. PubMed ID: 2986692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Similar effect of proteolipid apoproteins from human myelin (lipophilin) and bovine white matter on the lipid phase transition.
    Boggs JM; Clement IR; Moscarello MA
    Biochim Biophys Acta; 1980 Sep; 601(1):134-51. PubMed ID: 7407160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.