These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 20853102)

  • 1. The effects of error augmentation on learning to walk on a narrow balance beam.
    Domingo A; Ferris DP
    Exp Brain Res; 2010 Oct; 206(4):359-70. PubMed ID: 20853102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of physical guidance on short-term learning of walking on a narrow beam.
    Domingo A; Ferris DP
    Gait Posture; 2009 Nov; 30(4):464-8. PubMed ID: 19674900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuomotor error augmentation affects mediolateral head and trunk stabilization during walking.
    Qiao M; Richards JT; Franz JR
    Hum Mov Sci; 2019 Dec; 68():102525. PubMed ID: 31731210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varied movement errors drive learning of dynamic balance control during walking in people with incomplete spinal cord injury: a pilot study.
    Lin JT; Hsu CJ; Dee W; Chen D; Rymer WZ; Wu M
    Exp Brain Res; 2020 Apr; 238(4):981-993. PubMed ID: 32189042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a visuomotor walking task in an augmented reality training setting.
    Haarman JAM; Choi JT; Buurke JH; Rietman JS; Reenalda J
    Hum Mov Sci; 2017 Dec; 56(Pt B):11-19. PubMed ID: 29096179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity.
    Peterson SM; Rios E; Ferris DP
    J Neurophysiol; 2018 Oct; 120(4):1998-2010. PubMed ID: 30044183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Error variability affects the after effects following motor learning of lateral balance control during walking in people with spinal cord injury.
    Lin JT; Hsu CJ; Dee W; Chen D; Rymer WZ; Wu M
    Eur J Neurosci; 2019 Oct; 50(8):3221-3234. PubMed ID: 31161634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can observational training substitute motor training in preventing backward balance loss after an unexpected slip during walking?
    Bhatt T; Pai YC
    J Neurophysiol; 2008 Feb; 99(2):843-52. PubMed ID: 18003882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beam walking can detect differences in walking balance proficiency across a range of sensorimotor abilities.
    Sawers A; Ting LH
    Gait Posture; 2015 Feb; 41(2):619-23. PubMed ID: 25648493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of motor balance and coordination in mice using the balance beam.
    Luong TN; Carlisle HJ; Southwell A; Patterson PH
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21445033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor adaptation training for faster relearning.
    Malone LA; Vasudevan EV; Bastian AJ
    J Neurosci; 2011 Oct; 31(42):15136-43. PubMed ID: 22016547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Savings in sensorimotor learning during balance-challenged walking but not reaching.
    Bakkum A; Donelan JM; Marigold DS
    J Neurophysiol; 2021 Jun; 125(6):2384-2396. PubMed ID: 34038257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncontrolled manifold analysis of segmental angle variability during walking: preadolescents with and without Down syndrome.
    Black DP; Smith BA; Wu J; Ulrich BD
    Exp Brain Res; 2007 Dec; 183(4):511-21. PubMed ID: 17717659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalization of motor module recruitment across standing reactive balance and walking is associated with beam walking performance in young adults.
    Allen JL; Carey HD; Ting LH; Sawers A
    Gait Posture; 2020 Oct; 82():242-247. PubMed ID: 32979703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rotarod test: an evaluation of its effectiveness in assessing motor deficits following traumatic brain injury.
    Hamm RJ; Pike BR; O'Dell DM; Lyeth BG; Jenkins LW
    J Neurotrauma; 1994 Apr; 11(2):187-96. PubMed ID: 7932797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of the challenge point framework to guide motor learning of stepping reactions for improved balance control in people with stroke: a case series.
    Pollock CL; Boyd LA; Hunt MA; Garland SJ
    Phys Ther; 2014 Apr; 94(4):562-70. PubMed ID: 24363337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Handrail Holding During Treadmill Walking Reduces Locomotor Learning in Able-Bodied Persons.
    Buurke TJW; Lamoth CJC; van der Woude LHV; den Otter R
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1753-1759. PubMed ID: 31425041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rigid soles improve balance in beam walking, but improvements do not persist with bare feet.
    Huber ME; Chiovetto E; Giese M; Sternad D
    Sci Rep; 2020 May; 10(1):7629. PubMed ID: 32376990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The multiple tasks test. Strategies in Parkinson's disease.
    Bloem BR; Valkenburg VV; Slabbekoorn M; van Dijk JG
    Exp Brain Res; 2001 Apr; 137(3-4):478-86. PubMed ID: 11355392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.