These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20853191)

  • 1. Insights into molecular pathways for targeted therapeutics in acute leukemia.
    Stavropoulou V; Brault L; Schwaller J
    Swiss Med Wkly; 2010; 140():w13068. PubMed ID: 20853191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeted therapy for fusion-driven high-risk acute leukemia.
    Pikman Y; Stegmaier K
    Blood; 2018 Sep; 132(12):1241-1247. PubMed ID: 30049809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting the translational apparatus to improve leukemia therapy: roles of the PI3K/PTEN/Akt/mTOR pathway.
    Martelli AM; Evangelisti C; Chappell W; Abrams SL; Bäsecke J; Stivala F; Donia M; Fagone P; Nicoletti F; Libra M; Ruvolo V; Ruvolo P; Kempf CR; Steelman LS; McCubrey JA
    Leukemia; 2011 Jul; 25(7):1064-79. PubMed ID: 21436840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic nanoparticles for siRNA delivery in the treatment of leukaemia.
    Guo J; Cahill MR; McKenna SL; O'Driscoll CM
    Biotechnol Adv; 2014 Dec; 32(8):1396-409. PubMed ID: 25218571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Targeting of the Leukaemia Microenvironment.
    Kuek V; Hughes AM; Kotecha RS; Cheung LC
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34206957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microarray-based identification of new targets for specific therapies in pediatric leukemia.
    den Boer ML; Pieters R
    Curr Drug Targets; 2007 Jun; 8(6):761-4. PubMed ID: 17584031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging therapeutic targets in human acute myeloid leukemia (part 2) - bromodomain inhibition should be considered as a possible strategy for various patient subsets.
    Reikvam H; Hoang TT; Bruserud Ø
    Expert Rev Hematol; 2015 Jun; 8(3):315-27. PubMed ID: 25901742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic aberrations in paediatric acute leukaemias and implications for management of patients.
    Szczepański T; Harrison CJ; van Dongen JJ
    Lancet Oncol; 2010 Sep; 11(9):880-9. PubMed ID: 20435517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxia-Activated Prodrug TH-302 Targets Hypoxic Bone Marrow Niches in Preclinical Leukemia Models.
    Benito J; Ramirez MS; Millward NZ; Velez J; Harutyunyan KG; Lu H; Shi YX; Matre P; Jacamo R; Ma H; Konoplev S; McQueen T; Volgin A; Protopopova M; Mu H; Lee J; Bhattacharya PK; Marszalek JR; Davis RE; Bankson JA; Cortes JE; Hart CP; Andreeff M; Konopleva M
    Clin Cancer Res; 2016 Apr; 22(7):1687-98. PubMed ID: 26603259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the molecular mechanisms underlying sensitivity/resistance to the atypical retinoid ST1926 in acute myeloid leukaemia cells: the role of histone H2A.Z, cAMP-dependent protein kinase A and the proteasome.
    Fratelli M; Fisher JN; Paroni G; Di Francesco AM; Pierri F; Pisano C; Godl K; Marx S; Tebbe A; Valli C; Gianni M; Stravalaci M; Gobbi M; Terao M; Garattini E
    Eur J Cancer; 2013 Apr; 49(6):1491-500. PubMed ID: 23245330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging targets for hematological malignancies.
    Cilloni D; Frassoni F; Saglio G
    Curr Opin Drug Discov Devel; 2010 Sep; 13(5):548-58. PubMed ID: 20812146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic dysregulation of leukaemic HOX code in MLL-rearranged leukaemia mouse model.
    Ng RK; Kong CT; So CC; Lui WC; Chan YF; Leung KC; So KC; Tsang HM; Chan LC; Sham MH
    J Pathol; 2014 Jan; 232(1):65-74. PubMed ID: 24122813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MicroRNAs in leukemia.
    Croce C
    Clin Adv Hematol Oncol; 2006 Aug; 4(8):577-8. PubMed ID: 17099614
    [No Abstract]   [Full Text] [Related]  

  • 15. Targeting c-myc in leukemia.
    Calabretta B; Skorski T
    Anticancer Drug Des; 1997 Jul; 12(5):373-81. PubMed ID: 9236853
    [No Abstract]   [Full Text] [Related]  

  • 16. Targeting the transcription factor Myb by small-molecule inhibitors.
    Uttarkar S; Frampton J; Klempnauer KH
    Exp Hematol; 2017 Mar; 47():31-35. PubMed ID: 28017646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surrogate marker profiles for genetic lesions in acute leukemias.
    Paietta E
    Best Pract Res Clin Haematol; 2010 Sep; 23(3):359-68. PubMed ID: 21112035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel role of triazenes in haematological malignancies: pilot study of Temozolomide, Lomeguatrib and IL-2 in the chemo-immunotherapy of acute leukaemia.
    Caporaso P; Turriziani M; Venditti A; Marchesi F; Buccisano F; Tirindelli MC; Alvino E; Garbin A; Tortorelli G; Toppo L; Bonmassar E; D'Atri S; Amadori S
    DNA Repair (Amst); 2007 Aug; 6(8):1179-86. PubMed ID: 17500047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Src kinase signaling in leukaemia.
    Li S
    Int J Biochem Cell Biol; 2007; 39(7-8):1483-8. PubMed ID: 17350876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular basis of leukemia.
    Gilliland DG; Jordan CT; Felix CA
    Hematology Am Soc Hematol Educ Program; 2004; ():80-97. PubMed ID: 15561678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.