These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20853191)

  • 21. The leukemia stem cell.
    Estrov Z
    Cancer Treat Res; 2010; 145():1-17. PubMed ID: 20306242
    [No Abstract]   [Full Text] [Related]  

  • 22. SWI/SNF Subunits SMARCA4, SMARCD2 and DPF2 Collaborate in MLL-Rearranged Leukaemia Maintenance.
    Cruickshank VA; Sroczynska P; Sankar A; Miyagi S; Rundsten CF; Johansen JV; Helin K
    PLoS One; 2015; 10(11):e0142806. PubMed ID: 26571505
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy.
    Tsiftsoglou AS; Bonovolias ID; Tsiftsoglou SA
    Pharmacol Ther; 2009 Jun; 122(3):264-80. PubMed ID: 19306896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Acute myeloid leukemia: molecular pathogenesis and new therapeutic strategies].
    Goyama S
    Rinsho Ketsueki; 2016 Feb; 57(2):118-28. PubMed ID: 26935629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Molecular diagnosis of and molecular targeting therapy for leukemia].
    Tabe Y
    Rinsho Byori; 2009 Feb; 57(2):137-45. PubMed ID: 19317219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Epigenetic mechanisms in AML - a target for therapy.
    Oki Y; Issa JP
    Cancer Treat Res; 2010; 145():19-40. PubMed ID: 20306243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Significance of serine threonine tyrosine kinase 1 as a drug resistance factor and therapeutic predictor in acute leukemia.
    Nirasawa S; Kobayashi D; Kondoh T; Kuribayashi K; Tanaka M; Yanagihara N; Watanabe N
    Int J Oncol; 2014 Nov; 45(5):1867-74. PubMed ID: 25190507
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Homeobox gene expression in acute myeloid leukemia is linked to typical underlying molecular aberrations.
    Skvarova Kramarzova K; Fiser K; Mejstrikova E; Rejlova K; Zaliova M; Fornerod M; Drabkin HA; van den Heuvel-Eibrink MM; Stary J; Trka J; Starkova J
    J Hematol Oncol; 2014 Dec; 7():94. PubMed ID: 25539595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting of Bcl-2 family proteins for treatment of acute leukaemia.
    Jurečeková J; Hatok J; Stefániková A; Dobrota D; Račay P
    Gen Physiol Biophys; 2011; 30 Spec No():S3-S12. PubMed ID: 21869449
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Musashi 2 in hematopoiesis.
    de Andrés-Aguayo L; Varas F; Graf T
    Curr Opin Hematol; 2012 Jul; 19(4):268-72. PubMed ID: 22517588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expression profile of heat shock proteins in acute myeloid leukaemia patients reveals a distinct signature strongly associated with FLT3 mutation status--consequences and potentials for pharmacological intervention.
    Reikvam H; Hatfield KJ; Ersvaer E; Hovland R; Skavland J; Gjertsen BT; Petersen K; Bruserud O
    Br J Haematol; 2012 Feb; 156(4):468-80. PubMed ID: 22150087
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Targeted therapy of acute myeloid leukemia.
    Carneiro BA; Altman JK; Kaplan JB; Ossenkoppele G; Swords R; Platanias LC; Giles FJ
    Expert Rev Anticancer Ther; 2015 Apr; 15(4):399-413. PubMed ID: 25623136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From dissection of disease pathogenesis to elucidation of mechanisms of targeted therapies: leukemia research in the genomic era.
    Zhou GB; Li G; Chen SJ; Chen Z
    Acta Pharmacol Sin; 2007 Sep; 28(9):1434-49. PubMed ID: 17723177
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research.
    Dinner SN; Giles FJ; Altman JK
    Curr Opin Hematol; 2014 Mar; 21(2):79-86. PubMed ID: 24419335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging treatments in acute myeloid leukaemia.
    Kell J
    Expert Opin Emerg Drugs; 2004 May; 9(1):55-71. PubMed ID: 15155136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted therapy in leukemia.
    Downing JR
    Mod Pathol; 2008 May; 21 Suppl 2():S2-7. PubMed ID: 18437169
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of DNA methylation in the suppression of Apaf-1 protein in human leukaemia.
    Fu WN; Bertoni F; Kelsey SM; McElwaine SM; Cotter FE; Newland AC; Jia L
    Oncogene; 2003 Jan; 22(3):451-5. PubMed ID: 12545166
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of drug resistance in acute leukaemia.
    Hall A; Cattan AR; Proctor SJ
    Leuk Res; 1989; 13(5):351-6. PubMed ID: 2664358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Blastic leukaemias (AML): a biologist's view.
    Cáceres-Cortés JR
    Cell Biochem Biophys; 2013 May; 66(1):13-22. PubMed ID: 22801786
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opposite expression pattern of Src kinase Lyn in acute and chronic haematological malignancies.
    Hussein K; von Neuhoff N; Büsche G; Buhr T; Kreipe H; Bock O
    Ann Hematol; 2009 Nov; 88(11):1059-67. PubMed ID: 19290526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.