These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 208532)

  • 1. Phenazine methosulfate mediated photoinactivation of some energy linked reactions in Rhodospirillum rubrum.
    Kerber NL; Pucheu NL; García AF
    Biochem Biophys Res Commun; 1978 Mar; 81(2):667-71. PubMed ID: 208532
    [No Abstract]   [Full Text] [Related]  

  • 2. PMS photo-inhibition in Rhodospirillum rubrum membranes in the presence of permeant entities affecting either the deltapsi or the deltapH components of the protonmotive force.
    Kerber NL; Pucheu NL; García AF
    FEBS Lett; 1978 Oct; 94(2):265-8. PubMed ID: 29789
    [No Abstract]   [Full Text] [Related]  

  • 3. Photoinactivation of photophosphorylation and dark ATPase in Rhodospirillum rubrum chromatophores.
    Slooten L; Sybesma C
    Biochim Biophys Acta; 1976 Dec; 449(3):565-80. PubMed ID: 11818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of ammonia, darkness, and phenazine methosulfate on whole-cell nitrogenase activity and Fe protein modification in Rhodospirillum rubrum.
    Kanemoto RH; Ludden PW
    J Bacteriol; 1984 May; 158(2):713-20. PubMed ID: 6427184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site of interaction between phenazine methosulphate and the respiratory chain of Bacillus subtilis.
    Bisschop A; Bergsma J; Konings WN
    Eur J Biochem; 1979 Jan; 93(2):369-74. PubMed ID: 218814
    [No Abstract]   [Full Text] [Related]  

  • 6. [Photooxidation and light-induced transport of phenazine methosulfate in chromatophores of purple bacteria].
    Bulychev AA; Grishanova NP; Karagulian AK; Kononenko AA; Kurella GA
    Biokhimiia; 1981 Jun; 46(6):1057-66. PubMed ID: 6789897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phototaxis and membrane potential in the photosynthetic bacterium Rhodospirillum rubrum.
    Harayama S; Iino T
    J Bacteriol; 1977 Jul; 131(1):34-41. PubMed ID: 194880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine nucleotide levels in Rhodospirillum rubrum during switch-off of whole-cell nitrogenase activity.
    Paul TD; Ludden PW
    Biochem J; 1984 Dec; 224(3):961-9. PubMed ID: 6441571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of energy-transfer inhibitors on proton permeability and photophosphorylation in normal and preilluminated Rhodospirillum rubrum chromatophores.
    Slooten L; Branders C
    Biochim Biophys Acta; 1979 Jul; 547(1):79-90. PubMed ID: 37903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. P430, a possible primary electron acceptor in Rhodospirillum rubrum.
    Silberstein BR; Gromet-Elhanan Z
    FEBS Lett; 1974 Jun; 42(2):141-4. PubMed ID: 4369098
    [No Abstract]   [Full Text] [Related]  

  • 11. Generation of free radicals from phenazine methosulfate in Trypanosoma cruzi epimastigotes.
    Docampo R; Cruz FS; Muniz RP; Esquivel DM; de Vasconcellos ME
    Acta Trop; 1978 Sep; 35(3):221-37. PubMed ID: 31775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascorbate-phenazine methosulfate-dependent membrane energization in respiratory chain mutants of Escherichia coli.
    Singh AP; Bragg PD
    Biochem Biophys Res Commun; 1976 Sep; 72(1):195-201. PubMed ID: 791275
    [No Abstract]   [Full Text] [Related]  

  • 13. Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulfate on the integration of metabolic routes.
    Hothersall JS; Baquer N; Greenbaum AL; McLean P
    Arch Biochem Biophys; 1979 Dec; 198(2):478-92. PubMed ID: 42355
    [No Abstract]   [Full Text] [Related]  

  • 14. Phenazine methosulfate induces a neurally-mediated contraction of the guinea-pig ileum.
    Hanani M; Nissan S
    Life Sci; 1986 Nov; 39(19):1805-12. PubMed ID: 3773643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The inhibition of photosynthetic electron transfer in Rhodospirillum rubrum by N ,N' -dicyclohexylcarbodiimide.
    Pototsky NYa ; Remennikov VG; Kotova EA; Samuilov VD
    Biochim Biophys Acta; 1981 Feb; 634(2):266-70. PubMed ID: 6781540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of a coupling factor from Rhodospirillum rubrum with coupling factor deficient chromatophores.
    Pfluger UN; Dahl JS; Lutz HU; Bachofen R
    Arch Microbiol; 1975 Jun; 104(2):179-84. PubMed ID: 125569
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of oxidized and reduced N-methylphenazonium methosulfate (PMS) with photosystem II.
    Schmidt B
    Biochim Biophys Acta; 1976 Dec; 449(3):516-24. PubMed ID: 999850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of phenazine methosulfate-ascorbate on bacterial active transport and adenosine triphosphate formation: inhibition of Pseudomonas aeruginosa and stimulation of Escherichia coli.
    Eagon RG; Hodge TW; Rake JB; Yarbrough JM
    Can J Microbiol; 1979 Jul; 25(7):798-802. PubMed ID: 113071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inhibitory effect of the artificial electron donor system, phenazine methosulfate-ascorbate, on bacterial transport mechanisms.
    Eagon RG; Gitter BD; Rowe JJ
    J Supramol Struct; 1977; 7(1):49-59. PubMed ID: 415185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenazine ethosulfate as a preferred electron acceptor to phenazine methosulfate in dye-linked enzyme assays.
    Ghosh R; Quayle JR
    Anal Biochem; 1979 Oct; 99(1):112-7. PubMed ID: 231392
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.