These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 20853380)
1. Reversible pH-regulated control of photosensitized singlet oxygen production using a DNA i-motif. Tørring T; Toftegaard R; Arnbjerg J; Ogilby PR; Gothelf KV Angew Chem Int Ed Engl; 2010 Oct; 49(43):7923-5. PubMed ID: 20853380 [No Abstract] [Full Text] [Related]
2. DNA-programmed control of photosensitized singlet oxygen production. Cló E; Snyder JW; Voigt NV; Ogilby PR; Gothelf KV J Am Chem Soc; 2006 Apr; 128(13):4200-1. PubMed ID: 16568974 [TBL] [Abstract][Full Text] [Related]
3. Oxidation of 2'-deoxyadenosine 5'-monophosphate photoinduced by lumazine. Denofrio MP; Thomas AH; Lorente C J Phys Chem A; 2010 Oct; 114(41):10944-50. PubMed ID: 20873833 [TBL] [Abstract][Full Text] [Related]
4. Effect of sensitizer protonation on singlet oxygen production in aqueous and nonaqueous media. Arnbjerg J; Johnsen M; Nielsen CB; Jørgensen M; Ogilby PR J Phys Chem A; 2007 May; 111(21):4573-83. PubMed ID: 17480060 [TBL] [Abstract][Full Text] [Related]
5. Control and selectivity of photosensitized singlet oxygen production: challenges in complex biological systems. Cló E; Snyder JW; Ogilby PR; Gothelf KV Chembiochem; 2007 Mar; 8(5):475-81. PubMed ID: 17323398 [TBL] [Abstract][Full Text] [Related]
6. Spatial and temporal electrochemical control of singlet oxygen production and decay in photosensitized experiments. Ijeri VS; Daasbjerg K; Ogilby PR; Poulsen L Langmuir; 2008 Feb; 24(3):1070-9. PubMed ID: 18173293 [TBL] [Abstract][Full Text] [Related]
7. The microenvironment of DNA switches the activity of singlet oxygen generation photosensitized by berberine and palmatine. Hirakawa K; Hirano T Photochem Photobiol; 2008; 84(1):202-8. PubMed ID: 18173721 [TBL] [Abstract][Full Text] [Related]
8. Controlled generation of singlet oxygen by a water-soluble meso-pyrenylporphyrin photosensitizer through interaction with DNA. Hirakawa K; Harada M; Okazaki S; Nosaka Y Chem Commun (Camb); 2012 May; 48(39):4770-2. PubMed ID: 22473460 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of singlet oxygen generation by DNA-binding photosensitizers. Hirakawa K; Hirano T; Nishimura Y; Arai T; Nosaka Y J Phys Chem B; 2012 Mar; 116(9):3037-44. PubMed ID: 22313410 [TBL] [Abstract][Full Text] [Related]
10. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671 [TBL] [Abstract][Full Text] [Related]
11. Toward singlet oxygen delivery at a measured rate: a self-reporting photosensitizer. Erbas-Cakmak S; Akkaya EU Org Lett; 2014 Jun; 16(11):2946-9. PubMed ID: 24849844 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and characterization of water-soluble phenylene-vinylene-based singlet oxygen sensitizers for two-photon excitation. Nielsen CB; Johnsen M; Arnbjerg J; Pittelkow M; McIlroy SP; Ogilby PR; Jørgensen M J Org Chem; 2005 Sep; 70(18):7065-79. PubMed ID: 16122224 [TBL] [Abstract][Full Text] [Related]
13. Kinetics and yield of singlet oxygen photosensitized by hypericin in organic and biological media. Ehrenberg B; Anderson JL; Foote CS Photochem Photobiol; 1998 Aug; 68(2):135-40. PubMed ID: 9723207 [TBL] [Abstract][Full Text] [Related]
14. Theoretical and experimental analysis of the luminescence signal of singlet oxygen for different photosensitizers. Baier J; Fuss T; Pöllmann C; Wiesmann C; Pindl K; Engl R; Baumer D; Maier M; Landthaler M; Bäumler W J Photochem Photobiol B; 2007 Jun; 87(3):163-73. PubMed ID: 17482831 [TBL] [Abstract][Full Text] [Related]
15. Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell. Gollmer A; Arnbjerg J; Blaikie FH; Pedersen BW; Breitenbach T; Daasbjerg K; Glasius M; Ogilby PR Photochem Photobiol; 2011; 87(3):671-9. PubMed ID: 21272007 [TBL] [Abstract][Full Text] [Related]
16. One- and two-photon singlet oxygen generation with new fluorene-based photosensitizers. Andrasik SJ; Belfield KD; Bondar MV; Hernandez FE; Morales AR; Przhonska OV; Yao S Chemphyschem; 2007 Feb; 8(3):399-404. PubMed ID: 17226876 [TBL] [Abstract][Full Text] [Related]
17. Reversible photochemical control of singlet oxygen generation using diarylethene photochromic switches. Hou L; Zhang X; Pijper TC; Browne WR; Feringa BL J Am Chem Soc; 2014 Jan; 136(3):910-3. PubMed ID: 24392882 [TBL] [Abstract][Full Text] [Related]
18. Riboflavin interactions with oxygen-a survey from the photochemical perspective. Insińska-Rak M; Sikorski M Chemistry; 2014 Nov; 20(47):15280-91. PubMed ID: 25302465 [TBL] [Abstract][Full Text] [Related]
19. Molecular tuning of phenylene-vinylene derivatives for two-photon photosensitized singlet oxygen production. Nielsen CB; Arnbjerg J; Johnsen M; Jorgensen M; Ogilby PR J Org Chem; 2009 Dec; 74(23):9094-104. PubMed ID: 19904908 [TBL] [Abstract][Full Text] [Related]
20. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green. Ragàs X; Jiménez-Banzo A; Sánchez-García D; Batllori X; Nonell S Chem Commun (Camb); 2009 May; (20):2920-2. PubMed ID: 19436910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]