These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 20853448)
1. Field measurement of nickel sediment toxicity: role of acid volatile sulfide. Nguyen LT; Burton GA; Schlekat CE; Janssen CR Environ Toxicol Chem; 2011 Jan; 30(1):162-72. PubMed ID: 20853448 [TBL] [Abstract][Full Text] [Related]
2. Nickel partitioning in formulated and natural freshwater sediments. Doig LE; Liber K Chemosphere; 2006 Feb; 62(6):968-79. PubMed ID: 16122779 [TBL] [Abstract][Full Text] [Related]
3. Macroinvertebrate responses to nickel in multisystem exposures. Custer KW; Kochersberger JP; Anderson PD; Fetters KJ; Hummel S; Burton GA Environ Toxicol Chem; 2016 Jan; 35(1):101-14. PubMed ID: 26178528 [TBL] [Abstract][Full Text] [Related]
4. Field validation of sediment zinc toxicity. Burton GA; Nguyen LT; Janssen C; Baudo R; McWilliam R; Bossuyt B; Beltrami M; Green A Environ Toxicol Chem; 2005 Mar; 24(3):541-53. PubMed ID: 15779753 [TBL] [Abstract][Full Text] [Related]
5. [Acid volatile sulfide and heavy metals biotoxicity in a municipal polluted river]. Li F; Wen YM; Zhu PT Huan Jing Ke Xue; 2007 Aug; 28(8):1810-5. PubMed ID: 17926416 [TBL] [Abstract][Full Text] [Related]
6. Chronic toxicity of nickel-spiked freshwater sediments: variation in toxicity among eight invertebrate taxa and eight sediments. Besser JM; Brumbaugh WG; Ingersoll CG; Ivey CD; Kunz JL; Kemble NE; Schlekat CE; Garman ER Environ Toxicol Chem; 2013 Nov; 32(11):2495-506. PubMed ID: 23657897 [TBL] [Abstract][Full Text] [Related]
7. Laboratory toxicity and benthic invertebrate field colonization of Upper Columbia River sediments: finding adverse effects using multiple lines of evidence. Fairchild JF; Kemble NE; Allert AL; Brumbaugh WG; Ingersoll CG; Dowling B; Gruenenfelder C; Roland JL Arch Environ Contam Toxicol; 2012 Jul; 63(1):54-68. PubMed ID: 22402778 [TBL] [Abstract][Full Text] [Related]
8. Influence of acid volatile sulfides and simultaneously extracted metals on the bioavailability and toxicity of a mixture of sediment-associated Cd, Ni, and Zn to polychaetes Neanthes arenaceodentata. Lee JS; Lee JH Sci Total Environ; 2005 Feb; 338(3):229-41. PubMed ID: 15713331 [TBL] [Abstract][Full Text] [Related]
9. Toxicological availability of nickel to the benthic oligochaete Lumbriculus variegatus. Vandegehuchte MB; Roman YE; Nguyen LT; Janssen CR; De Schamphelaere KA Environ Int; 2007 Aug; 33(6):736-42. PubMed ID: 17395263 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the performance of diffusive gradients in thin films for predicting Ni sediment toxicity. Costello DM; Burton GA; Hammerschmidt CR; Taulbee WK Environ Sci Technol; 2012 Sep; 46(18):10239-46. PubMed ID: 22891754 [TBL] [Abstract][Full Text] [Related]
11. Dynamics of reactive sulfide and its control on metal bioavailability and toxicity in metal-polluted sediments from Lake Taihu, China. Yin H; Fan C Arch Environ Contam Toxicol; 2011 May; 60(4):565-75. PubMed ID: 20665211 [TBL] [Abstract][Full Text] [Related]
12. Assessment of metal toxicity and development of sediment quality guidelines using the equilibrium partitioning model for the Three Gorges Reservoir, China. Gao L; Gao B; Wei X; Zhou H; Xu D; Wang Y Environ Sci Pollut Res Int; 2015 Nov; 22(22):17577-85. PubMed ID: 26141978 [TBL] [Abstract][Full Text] [Related]
13. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Prica M; Dalmacija B; Roncević S; Krcmar D; Becelić M Sci Total Environ; 2008 Jan; 389(2-3):235-44. PubMed ID: 17936333 [TBL] [Abstract][Full Text] [Related]
14. Characterizing sediment acid volatile sulfide concentrations in European streams. Burton GA; Green A; Baudo R; Forbes V; Nguyen LT; Janssen CR; Kukkonen J; Leppanen M; Maltby L; Soares A; Kapo K; Smith P; Dunning J Environ Toxicol Chem; 2007 Jan; 26(1):1-12. PubMed ID: 17269454 [TBL] [Abstract][Full Text] [Related]
15. Improving sediment-quality guidelines for nickel: development and application of predictive bioavailability models to assess chronic toxicity of nickel in freshwater sediments. Vangheluwe ML; Verdonck FA; Besser JM; Brumbaugh WG; Ingersoll CG; Schlekat CE; Garman ER Environ Toxicol Chem; 2013 Nov; 32(11):2507-19. PubMed ID: 23983116 [TBL] [Abstract][Full Text] [Related]
16. Spatial variation of metals and acid volatile sulfide in floodplain lake sediment. van Griethuysen C; Meijboom EW; Koelmans AA Environ Toxicol Chem; 2003 Mar; 22(3):457-65. PubMed ID: 12627630 [TBL] [Abstract][Full Text] [Related]
17. Sampling method, storage and pretreatment of sediment affect AVS concentrations with consequences for bioassay responses. De Lange HJ; Van Griethuysen C; Koelmans AA Environ Pollut; 2008 Jan; 151(1):243-51. PubMed ID: 17482732 [TBL] [Abstract][Full Text] [Related]
18. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments. Brumbaugh WG; Hammerschmidt CR; Zanella L; Rogevich E; Salata G; Bolek R Environ Toxicol Chem; 2011 Jun; 30(6):1306-9. PubMed ID: 21452392 [TBL] [Abstract][Full Text] [Related]
19. Development of a bioavailability-based risk assessment approach for nickel in freshwater sediments. Schlekat CE; Garman ER; Vangheluwe ML; Burton GA Integr Environ Assess Manag; 2016 Oct; 12(4):735-46. PubMed ID: 27640416 [TBL] [Abstract][Full Text] [Related]
20. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions? De Jonge M; Dreesen F; De Paepe J; Blust R; Bervoets L Environ Sci Technol; 2009 Jun; 43(12):4510-6. PubMed ID: 19603670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]