BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 20853519)

  • 1. The photodynamic effect: the comparison of chemiexcitation by luminol and phthalhydrazide.
    Bancirova M; Lasovský J
    Luminescence; 2011; 26(6):410-5. PubMed ID: 20853519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoinactivation of Gram positive and Gram negative bacteria with the antimicrobial peptide (KLAKLAK)(2) conjugated to the hydrophilic photosensitizer eosin Y.
    Johnson GA; Muthukrishnan N; Pellois JP
    Bioconjug Chem; 2013 Jan; 24(1):114-23. PubMed ID: 23240991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triazine-based covalent organic frameworks for photodynamic inactivation of bacteria as type-II photosensitizers.
    Liu T; Hu X; Wang Y; Meng L; Zhou Y; Zhang J; Chen M; Zhang X
    J Photochem Photobiol B; 2017 Oct; 175():156-162. PubMed ID: 28888168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A helpful technology--the luminescence detection of singlet oxygen to investigate photodynamic inactivation of bacteria (PDIB).
    Regensburger J; Maisch T; Felgenträger A; Santarelli F; Bäumler W
    J Biophotonics; 2010 Jun; 3(5-6):319-27. PubMed ID: 20222100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular antimicrobial photodynamic therapy: a novel technique for efficient eradication of pathogenic bacteria.
    Nakonechny F; Firer MA; Nitzan Y; Nisnevitch M
    Photochem Photobiol; 2010; 86(6):1350-5. PubMed ID: 20880227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of antimicrobial photodynamic therapy on S. aureus and E. coli using porphyrin photosensitizers bound to cyclodextrin.
    Hanakova A; Bogdanova K; Tomankova K; Pizova K; Malohlava J; Binder S; Bajgar R; Langova K; Kolar M; Mosinger J; Kolarova H
    Microbiol Res; 2014; 169(2-3):163-70. PubMed ID: 23899404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant-polymer nanoparticles enhance the effectiveness of anticancer photodynamic therapy.
    Khdair A; Gerard B; Handa H; Mao G; Shekhar MP; Panyam J
    Mol Pharm; 2008; 5(5):795-807. PubMed ID: 18646775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibacterial activity of tetraaryl-porphyrin photosensitizers: an in vitro study on Gram negative and Gram positive bacteria.
    Banfi S; Caruso E; Buccafurni L; Battini V; Zazzaron S; Barbieri P; Orlandi V
    J Photochem Photobiol B; 2006 Oct; 85(1):28-38. PubMed ID: 16737820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of photodynamic effects on NIH 3T3 cell line and bacteria.
    Hanakova A; Bogdanova K; Tomankova K; Binder S; Bajgar R; Langova K; Kolar M; Mosinger J; Kolarova H
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Jun; 158(2):201-7. PubMed ID: 23073531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibacterial photodynamic therapy on Staphylococcus aureus and Pseudomonas aeruginosa in-vitro.
    Thakuri PS; Joshi R; Basnet S; Pandey S; Taujale SD; Mishra N
    Nepal Med Coll J; 2011 Dec; 13(4):281-4. PubMed ID: 23016481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemiluminescence and Bioluminescence as an Excitation Source in the Photodynamic Therapy of Cancer: A Critical Review.
    Magalhães CM; Esteves da Silva JC; Pinto da Silva L
    Chemphyschem; 2016 Aug; 17(15):2286-94. PubMed ID: 27129132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of photosensitizer solvent on the mechanisms of photoactivated killing of Enterococcus faecalis.
    George S; Kishen A
    Photochem Photobiol; 2008; 84(3):734-40. PubMed ID: 18435622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photodynamic action of some sensitizers by photooxidation of luminol.
    Wierrani F; Kubin A; Loew HG; Henry M; Spängler B; Bodner K; Grünberger W; Ebermann R; Alth G
    Naturwissenschaften; 2002 Oct; 89(10):466-9. PubMed ID: 12384722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines.
    Ahn JC; Chung PS
    Gen Physiol Biophys; 2012 Sep; 31(3):343-50. PubMed ID: 23047947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the photodynamic effect on the A549 cell line by atomic force microscopy and the influence of green tea extract on the production of reactive oxygen species.
    Tomankova K; Kolarova H; Bajgar R; Jirova D; Kejlova K; Mosinger J
    Ann N Y Acad Sci; 2009 Aug; 1171():549-58. PubMed ID: 19723103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial photodynamic therapy for dental caries: evaluation of the photosensitizers used and light source properties.
    Nagata JY; Hioka N; Kimura E; Batistela VR; Terada RS; Graciano AX; Baesso ML; Hayacibara MF
    Photodiagnosis Photodyn Ther; 2012 Jun; 9(2):122-31. PubMed ID: 22594982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy.
    Shrestha A; Kishen A
    Photochem Photobiol; 2012; 88(3):577-83. PubMed ID: 22044238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ALA induced photodynamic effects on gram positive and negative bacteria.
    Nitzan Y; Salmon-Divon M; Shporen E; Malik Z
    Photochem Photobiol Sci; 2004 May; 3(5):430-5. PubMed ID: 15122360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced photodynamic efficiency of an aptamer-guided fullerene photosensitizer toward tumor cells.
    Liu Q; Xu L; Zhang X; Li N; Zheng J; Guan M; Fang X; Wang C; Shu C
    Chem Asian J; 2013 Oct; 8(10):2370-6. PubMed ID: 23907978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria.
    Huang L; Xuan Y; Koide Y; Zhiyentayev T; Tanaka M; Hamblin MR
    Lasers Surg Med; 2012 Aug; 44(6):490-9. PubMed ID: 22760848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.