BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 20853820)

  • 1. Reduction of surface hydrophobicity using a stimulus-responsive polysaccharide.
    Sedeva IG; Fornasiero D; Ralston J; Beattie DA
    Langmuir; 2010 Oct; 26(20):15865-74. PubMed ID: 20853820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quartz crystal microbalance with dissipation monitoring and surface plasmon resonance studies of carboxymethyl cellulose adsorption onto regenerated cellulose surfaces.
    Liu Z; Choi H; Gatenholm P; Esker AR
    Langmuir; 2011 Jul; 27(14):8718-28. PubMed ID: 21699205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of surface hydrophobicity on polyacrylamide adsorption.
    Sedeva IG; Fornasiero D; Ralston J; Beattie DA
    Langmuir; 2009 Apr; 25(8):4514-21. PubMed ID: 19256468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of fibrinogen adsorption at the silica substrate determined by QCM-D measurements.
    Kubiak K; Adamczyk Z; Wasilewska M
    J Colloid Interface Sci; 2015 Nov; 457():378-87. PubMed ID: 26209759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 125I-radiolabeling, surface plasmon resonance, and quartz crystal microbalance with dissipation: three tools to compare protein adsorption on surfaces of different wettability.
    Luan Y; Li D; Wang Y; Liu X; Brash JL; Chen H
    Langmuir; 2014 Feb; 30(4):1029-35. PubMed ID: 24393063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of glycinin and β-conglycinin on silica and cellulose: surface interactions as a function of denaturation, pH, and electrolytes.
    Salas C; Rojas OJ; Lucia LA; Hubbe MA; Genzer J
    Biomacromolecules; 2012 Feb; 13(2):387-96. PubMed ID: 22229657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bubble-surface interactions with graphite in the presence of adsorbed carboxymethylcellulose.
    Wu J; Delcheva I; Ngothai Y; Krasowska M; Beattie DA
    Soft Matter; 2015 Jan; 11(3):587-99. PubMed ID: 25515526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifouling coating of cellulose acetate thin films with polysaccharide multilayers.
    Mohan T; Kargl R; Tradt KE; Kulterer MR; Braćić M; Hribernik S; Stana-Kleinschek K; Ribitsch V
    Carbohydr Polym; 2015 Feb; 116():149-58. PubMed ID: 25458284
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of quartz crystal microbalance to study the impact of pH and ionic strength on protein-silicone oil interactions.
    Dixit N; Maloney KM; Kalonia DS
    Int J Pharm; 2011 Jun; 412(1-2):20-7. PubMed ID: 21497645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption and conformation of carboxymethyl cellulose at solid-liquid interfaces using spectroscopic, AFM and allied techniques.
    Wang J; Somasundaran P
    J Colloid Interface Sci; 2005 Nov; 291(1):75-83. PubMed ID: 15907862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of modified dextrins to a hydrophobic surface: QCM-D studies, AFM imaging, and dynamic contact angle measurements.
    Sedeva IG; Fetzer R; Fornasiero D; Ralston J; Beattie DA
    J Colloid Interface Sci; 2010 May; 345(2):417-26. PubMed ID: 20163801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of surface wettability on ion-specific protein adsorption.
    Wang X; Liu G; Zhang G
    Langmuir; 2012 Oct; 28(41):14642-53. PubMed ID: 22992017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-associated water and secondary structure effect removal of blood proteins from metallic substrates.
    Anand G; Zhang F; Linhardt RJ; Belfort G
    Langmuir; 2011 Mar; 27(5):1830-6. PubMed ID: 21182242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of carboxymethyl cellulose on polymer surfaces: evidence of a specific interaction with cellulose.
    Kargl R; Mohan T; Bračič M; Kulterer M; Doliška A; Stana-Kleinschek K; Ribitsch V
    Langmuir; 2012 Aug; 28(31):11440-7. PubMed ID: 22759080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the adsorption of endocrine disruptor compounds on typical filter materials using a quartz crystal microbalance.
    Guo JX; Pan J; Wang J; Wang F; Shi HX
    Environ Sci Pollut Res Int; 2019 Jul; 26(20):20499-20509. PubMed ID: 31102210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption effectiveness of β-lactoglobulin onto gold surface determined by quartz crystal microbalance.
    Jachimska B; Świątek S; Loch JI; Lewiński K; Luxbacher T
    Bioelectrochemistry; 2018 Jun; 121():95-104. PubMed ID: 29413868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes.
    Delcroix MF; Demoustier-Champagne S; Dupont-Gillain CC
    Langmuir; 2014 Jan; 30(1):268-77. PubMed ID: 24328402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of lysozyme adsorption onto gold surface determined by quartz crystal microbalance and surface plasmon resonance.
    Komorek P; Wałek M; Jachimska B
    Bioelectrochemistry; 2020 Oct; 135():107582. PubMed ID: 32535493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of Bovine Serum Albumin (BSA) Attachment onto Self-Assembled Monolayers (SAMs) Using Combinatorial Quartz Crystal Microbalance with Dissipation (QCM-D) and Spectroscopic Ellipsometry (SE).
    Phan HT; Bartelt-Hunt S; Rodenhausen KB; Schubert M; Bartz JC
    PLoS One; 2015; 10(10):e0141282. PubMed ID: 26505481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.