BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 20853855)

  • 1. Temperature difference between the cooled and the noncooled parts of an electrolyte in capillary electrophoresis.
    Musheev MU; Filiptsev Y; Krylov SN
    Anal Chem; 2010 Oct; 82(20):8692-5. PubMed ID: 20853855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncooled capillary inlet: a source of systematic errors in capillary-electrophoresis-based affinity analyses.
    Musheev MU; Filiptsev Y; Krylov SN
    Anal Chem; 2010 Oct; 82(20):8637-41. PubMed ID: 20845920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified universal method for determining electrolyte temperatures in a capillary electrophoresis instrument with forced-air cooling.
    Patel KH; Evenhuis CJ; Cherney LT; Krylov SN
    Electrophoresis; 2012 Mar; 33(6):1079-85. PubMed ID: 22528428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Universal method for determining electrolyte temperatures in capillary electrophoresis.
    Evenhuis CJ; Musheev MU; Krylov SN
    Anal Chem; 2011 Mar; 83(5):1808-14. PubMed ID: 21288017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Internal electrolyte temperatures for polymer and fused-silica capillaries used in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Electrophoresis; 2005 Nov; 26(22):4333-44. PubMed ID: 16287176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensation of the siphoning effect in nonaqueous capillary electrophoresis by vial lifting.
    Jussila M; Palonen S; Porras SP; Riekkola ML
    Electrophoresis; 2000 Feb; 21(3):586-92. PubMed ID: 10726764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for assessment and minimization of errors in determination of electrophoretic or electroosmotic mobilities and velocities associated with the axial electric field distortion.
    Nowak PM; Woźniakiewicz M; Kościelniak P
    Electrophoresis; 2015 Dec; 36(24):2994-3001. PubMed ID: 26383237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using nonequilibrium capillary electrophoresis of equilibrium mixtures for the determination of temperature in capillary electrophoresis.
    Berezovski M; Krylov SN
    Anal Chem; 2004 Dec; 76(23):7114-7. PubMed ID: 15571367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH programming in capillary electrophoresis by means of temperature programming.
    Reijenga JC
    J Chromatogr A; 2009 Apr; 1216(17):3642-5. PubMed ID: 19171349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Joule heating on efficiency and performance for microchip-based and capillary-based electrophoretic separation systems: a closer look.
    Petersen NJ; Nikolajsen RP; Mogensen KB; Kutter JP
    Electrophoresis; 2004 Jan; 25(2):253-69. PubMed ID: 14743478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of suxamethonium in a pharmaceutical formulation by capillary electrophoresis with contactless conductivity detection (CE-C(4)D).
    Nussbaumer S; Fleury-Souverain S; Rudaz S; Bonnabry P; Veuthey JL
    J Pharm Biomed Anal; 2009 Feb; 49(2):333-7. PubMed ID: 19121913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joule heating effects and the experimental determination of temperature during CE.
    Evenhuis CJ; Haddad PR
    Electrophoresis; 2009 Mar; 30(5):897-909. PubMed ID: 19197907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat-associated field distortion in electro-migration techniques.
    Evenhuis CJ; Musheev MU; Krylov SN
    Anal Chem; 2010 Oct; 82(20):8398-401. PubMed ID: 20866099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonaqueous capillary electrophoresis with alcoholic background electrolytes: separation efficiency under high electrical field strengths.
    Palonen S; Jussila M; Porras SP; Hyötyläinen T; Riekkola ML
    Electrophoresis; 2002 Feb; 23(3):393-9. PubMed ID: 11870738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature profiles and heat dissipation in capillary electrophoresis.
    Evenhuis CJ; Guijt RM; Macka M; Marriott PJ; Haddad PR
    Anal Chem; 2006 Apr; 78(8):2684-93. PubMed ID: 16615780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous contactless conductivity detection and UV detection for the study of separation of tamsulosin enantiomers in discontinuous electrolyte systems by CE.
    Petr J; Maier V; Horáková J; Sevcík J
    Electrophoresis; 2006 Dec; 27(23):4735-45. PubMed ID: 17080485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joule heating in packed capillaries used in capillary electrochromatography.
    Rathore AS; Reynolds KJ; Colón LA
    Electrophoresis; 2002 Sep; 23(17):2918-28. PubMed ID: 12207300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.