These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 20854136)

  • 41. Effect of a short photoperiod on circadian rhythms of body temperature and motor activity in old rats.
    Benstaali C; Bogdan A; Touitou Y
    Pflugers Arch; 2002 May; 444(1-2):73-9. PubMed ID: 11976918
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Circadian rhythms of locomotor activity in the subterranean Mashona mole rat, Cryptomys darlingi.
    Vasicek CA; Oosthuizen MK; Cooper HM; Bennett NC
    Physiol Behav; 2005 Feb; 84(2):181-91. PubMed ID: 15708770
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of scheduled forced wheel activity on body weight in male F344 rats undergoing chronic circadian desynchronization.
    Tsai LL; Tsai YC
    Int J Obes (Lond); 2007 Sep; 31(9):1368-77. PubMed ID: 17356527
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Behavioral and Thermoregulatory Responses to Changes in Ambient Temperature and Wheel Running Availability in
    Bano-Otalora B; Rol MA; Madrid JA
    Front Integr Neurosci; 2021; 15():684988. PubMed ID: 34276317
    [No Abstract]   [Full Text] [Related]  

  • 46. Low amplitude entrainment of mice and the impact of circadian phase on behavior tests.
    Beeler JA; Prendergast B; Zhuang X
    Physiol Behav; 2006 May; 87(5):870-80. PubMed ID: 16600314
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel,
    Kumar D; Soni SK; Kronfeld-Schor N; Singaravel M
    Chronobiol Int; 2020 Dec; 37(12):1693-1708. PubMed ID: 33044096
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent, Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 1998 Feb; 13(1):9-17. PubMed ID: 9486839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Photic phase response curve in Octodon degus: assessment as a function of activity phase preference.
    Kas MJ; Edgar DM
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1385-9. PubMed ID: 10801311
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Twilight and photoperiod affect behavioral entrainment in the house mouse (Mus musculus).
    Comas M; Hut RA
    J Biol Rhythms; 2009 Oct; 24(5):403-12. PubMed ID: 19755585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Circadian organization of a subarctic rodent, the northern red-backed vole (Clethrionomys rutilus).
    Tavernier RJ; Largen AL; Bult-Ito A
    J Biol Rhythms; 2004 Jun; 19(3):238-47. PubMed ID: 15155010
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Circadian pattern of wheel-running activity of a South American subterranean rodent (Ctenomys cf knightii).
    Valentinuzzi VS; Oda GA; Araujo JF; Ralph MR
    Chronobiol Int; 2009 Jan; 26(1):14-27. PubMed ID: 19142755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Circadian organization in a diurnal rodent, Arvicanthis ansorgei Thomas 1910: chronotypes, responses to constant lighting conditions, and photoperiodic changes.
    Challet E; Pitrosky B; Sicard B; Malan A; PĂ©vet P
    J Biol Rhythms; 2002 Feb; 17(1):52-64. PubMed ID: 11837949
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Activity rhythms and masking response in the diurnal fat sand rat under laboratory conditions.
    Barak O; Kronfeld-Schor N
    Chronobiol Int; 2013 Nov; 30(9):1123-34. PubMed ID: 23926956
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions.
    Lax P; Zamora S; Madrid JA
    Chronobiol Int; 1999 May; 16(3):281-91. PubMed ID: 10373098
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The effects of feedback lighting on the circadian drinking rhythm in the diurnal new world primate Saimiri sciureus.
    Ferraro JS; Sulzman FM
    Am J Primatol; 1988; 15(2):143-55. PubMed ID: 11539805
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diurnal rodents as an advantageous model for affective disorders: novel data from diurnal degu (Octodon degus).
    Ashkenazy-Frolinger T; Einat H; Kronfeld-Schor N
    J Neural Transm (Vienna); 2015 Aug; 122 Suppl 1():S35-45. PubMed ID: 24352409
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Social cues modulate free-running circadian activity rhythms in the diurnal rodent, Octodon degus.
    Goel N; Lee TM
    Am J Physiol; 1997 Aug; 273(2 Pt 2):R797-804. PubMed ID: 9277571
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Gonadal hormone effects on entrained and free-running circadian activity rhythms in the developing diurnal rodent Octodon degus.
    Hummer DL; Jechura TJ; Mahoney MM; Lee TM
    Am J Physiol Regul Integr Comp Physiol; 2007 Jan; 292(1):R586-97. PubMed ID: 16917014
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Period gene expression in the diurnal degu (Octodon degus) differs from the nocturnal laboratory rat (Rattus norvegicus).
    Vosko AM; Hagenauer MH; Hummer DL; Lee TM
    Am J Physiol Regul Integr Comp Physiol; 2009 Feb; 296(2):R353-61. PubMed ID: 19036829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.