These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20854329)

  • 1. The methane cycle in ferruginous Lake Matano.
    Crowe SA; Katsev S; Leslie K; Sturm A; Magen C; Nomosatryo S; Pack MA; Kessler JD; Reeburgh WS; Roberts JA; González L; Douglas Haffner G; Mucci A; Sundby B; Fowle DA
    Geobiology; 2011 Jan; 9(1):61-78. PubMed ID: 20854329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the carbon cycle in Lake Matano.
    Kuntz LB; Laakso TA; Schrag DP; Crowe SA
    Geobiology; 2015 Sep; 13(5):454-61. PubMed ID: 25923883
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production and consumption of methane in freshwater lake ecosystems.
    Borrel G; Jézéquel D; Biderre-Petit C; Morel-Desrosiers N; Morel JP; Peyret P; Fonty G; Lehours AC
    Res Microbiol; 2011 Nov; 162(9):832-47. PubMed ID: 21704700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rates and pathways of CH
    Sturm A; Fowle DA; Jones C; Leslie K; Nomosatryo S; Henny C; Canfield DE; Crowe SA
    Geobiology; 2019 May; 17(3):294-307. PubMed ID: 30593722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High rates of anaerobic methanotrophy at low sulfate concentrations with implications for past and present methane levels.
    Beal EJ; Claire MW; House CH
    Geobiology; 2011 Mar; 9(2):131-9. PubMed ID: 21231994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trace methane oxidation and the methane dependency of sulfate reduction in anaerobic granular sludge.
    Meulepas RJ; Jagersma CG; Zhang Y; Petrillo M; Cai H; Buisman CJ; Stams AJ; Lens PN
    FEMS Microbiol Ecol; 2010 May; 72(2):261-71. PubMed ID: 20337708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic potential of microbial communities from ferruginous sediments.
    Vuillemin A; Horn F; Friese A; Winkel M; Alawi M; Wagner D; Henny C; Orsi WD; Crowe SA; Kallmeyer J
    Environ Microbiol; 2018 Dec; 20(12):4297-4313. PubMed ID: 29968357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifting microbial communities sustain multiyear iron reduction and methanogenesis in ferruginous sediment incubations.
    Bray MS; Wu J; Reed BC; Kretz CB; Belli KM; Simister RL; Henny C; Stewart FJ; DiChristina TJ; Brandes JA; Fowle DA; Crowe SA; Glass JB
    Geobiology; 2017 Sep; 15(5):678-689. PubMed ID: 28419718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury.
    Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE
    Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic and anaerobic methanotrophs in the Black Sea water column.
    Schubert CJ; Coolen MJ; Neretin LN; Schippers A; Abbas B; Durisch-Kaiser E; Wehrli B; Hopmans EC; Damsté JS; Wakeham S; Kuypers MM
    Environ Microbiol; 2006 Oct; 8(10):1844-56. PubMed ID: 16958765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reverse methanogenesis: testing the hypothesis with environmental genomics.
    Hallam SJ; Putnam N; Preston CM; Detter JC; Rokhsar D; Richardson PM; DeLong EF
    Science; 2004 Sep; 305(5689):1457-62. PubMed ID: 15353801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A marine microbial consortium apparently mediating anaerobic oxidation of methane.
    Boetius A; Ravenschlag K; Schubert CJ; Rickert D; Widdel F; Gieseke A; Amann R; Jørgensen BB; Witte U; Pfannkuche O
    Nature; 2000 Oct; 407(6804):623-6. PubMed ID: 11034209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional diversity of bacteria in a ferruginous hydrothermal sediment.
    Handley KM; Boothman C; Mills RA; Pancost RD; Lloyd JR
    ISME J; 2010 Sep; 4(9):1193-205. PubMed ID: 20410934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microbial consortium couples anaerobic methane oxidation to denitrification.
    Raghoebarsing AA; Pol A; van de Pas-Schoonen KT; Smolders AJ; Ettwig KF; Rijpstra WI; Schouten S; Damsté JS; Op den Camp HJ; Jetten MS; Strous M
    Nature; 2006 Apr; 440(7086):918-21. PubMed ID: 16612380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissimilatory Fe(III) and Mn(IV) reduction.
    Lovley DR; Holmes DE; Nevin KP
    Adv Microb Physiol; 2004; 49():219-86. PubMed ID: 15518832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An inorganic geochemical argument for coupled anaerobic oxidation of methane and iron reduction in marine sediments.
    Riedinger N; Formolo MJ; Lyons TW; Henkel S; Beck A; Kasten S
    Geobiology; 2014 Mar; 12(2):172-81. PubMed ID: 24460948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Bacterial processes of the methane cycle in the bottom sediments of Baikal lake].
    Dagurova OP; Namsaraev BB; Kozyreva LP; Zemskaia TI; Dulov LE
    Mikrobiologiia; 2004; 73(2):248-57. PubMed ID: 15198038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Intensity of the microbiological processes of the methane cycle in different types of Baltic lakes].
    Dziuban AN
    Mikrobiologiia; 2002; 71(1):111-8. PubMed ID: 11910799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Microbial metabolism of the carbon and sulfur cycles in Shira Lake (Khakasia)].
    Pimenov NV; Rusanov II; Karnachuk OV; Rogozin DIu; Briantseva IA; Lunina ON; Iusupov SK; Parnachev VP; Ivanov MV
    Mikrobiologiia; 2003; 72(2):259-67. PubMed ID: 12751251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of acetate-utilizing Bacteria and Archaea in methanogenic profundal sediments of Lake Kinneret (Israel) by stable isotope probing of rRNA.
    Schwarz JI; Lueders T; Eckert W; Conrad R
    Environ Microbiol; 2007 Jan; 9(1):223-37. PubMed ID: 17227427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.