These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 2085470)
1. A neural and computational model for the chromatic control of accommodation. Flitcroft DI Vis Neurosci; 1990 Dec; 5(6):547-55. PubMed ID: 2085470 [TBL] [Abstract][Full Text] [Related]
2. Accommodation and chromatic aberration: effect of spatial frequency. Stone D; Mathews S; Kruger PB Ophthalmic Physiol Opt; 1993 Jul; 13(3):244-52. PubMed ID: 8265165 [TBL] [Abstract][Full Text] [Related]
3. Accommodation with and without short-wavelength-sensitive cones and chromatic aberration. Kruger PB; Rucker FJ; Hu C; Rutman H; Schmidt NW; Roditis V Vision Res; 2005 May; 45(10):1265-74. PubMed ID: 15733959 [TBL] [Abstract][Full Text] [Related]
4. Theoretical effect of refractive error and accommodation on longitudinal chromatic aberration of the human eye. Atchison DA; Smith G; Waterworth MD Optom Vis Sci; 1993 Sep; 70(9):716-22. PubMed ID: 8233365 [TBL] [Abstract][Full Text] [Related]
5. The role of luminance and chromatic cues in emmetropisation. Rucker FJ Ophthalmic Physiol Opt; 2013 May; 33(3):196-214. PubMed ID: 23662955 [TBL] [Abstract][Full Text] [Related]
7. The interactions between chromatic aberration, defocus and stimulus chromaticity: implications for visual physiology and colorimetry. Flitcroft DI Vision Res; 1989; 29(3):349-60. PubMed ID: 2773345 [TBL] [Abstract][Full Text] [Related]
8. Chromatic aberration and accommodation: their role in emmetropization in the chick. Wildsoet CF; Howland HC; Falconer S; Dick K Vision Res; 1993 Aug; 33(12):1593-603. PubMed ID: 8236848 [TBL] [Abstract][Full Text] [Related]
9. Effects of longitudinal chromatic aberration on accommodation and emmetropization. Seidemann A; Schaeffel F Vision Res; 2002 Sep; 42(21):2409-17. PubMed ID: 12367740 [TBL] [Abstract][Full Text] [Related]
10. Wavelength-dependent magnification and polychromatic image quality in eyes corrected for longitudinal chromatic aberration. Zhang X; Thibos LN; Bradley A Optom Vis Sci; 1997 Jul; 74(7):563-9. PubMed ID: 9293526 [TBL] [Abstract][Full Text] [Related]
11. The effect of longitudinal chromatic aberration on the lag of accommodation and depth of field. Jaskulski M; Marín-Franch I; Bernal-Molina P; López-Gil N Ophthalmic Physiol Opt; 2016 Nov; 36(6):657-663. PubMed ID: 27790774 [TBL] [Abstract][Full Text] [Related]
12. Cone contributions to signals for accommodation and the relationship to refractive error. Rucker FJ; Kruger PB Vision Res; 2006 Oct; 46(19):3079-89. PubMed ID: 16782165 [TBL] [Abstract][Full Text] [Related]
13. The spatially resolved refractometer. Burns SA J Refract Surg; 2000; 16(5):S566-9. PubMed ID: 11019874 [TBL] [Abstract][Full Text] [Related]
14. Accommodation to simulations of defocus and chromatic aberration in the presence of chromatic misalignment. Stark LR; Lee RS; Kruger PB; Rucker FJ; Ying Fan H Vision Res; 2002 Jun; 42(12):1485-98. PubMed ID: 12074944 [TBL] [Abstract][Full Text] [Related]
15. Small amounts of chromatic aberration influence dynamic accommodation. Kruger PB; Nowbotsing S; Aggarwala KR; Mathews S Optom Vis Sci; 1995 Sep; 72(9):656-66. PubMed ID: 8532307 [TBL] [Abstract][Full Text] [Related]
16. Focusing on mixed narrow band stimuli: Implications for mechanisms of accommodation and displays. Finch AP; Fernandez-Alonso M; Kirby AK; Read JCA; Love GD J Vis; 2024 Sep; 24(9):14. PubMed ID: 39302649 [TBL] [Abstract][Full Text] [Related]