BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 20854924)

  • 1. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid.
    Raab AM; Gebhardt G; Bolotina N; Weuster-Botz D; Lang C
    Metab Eng; 2010 Nov; 12(6):518-25. PubMed ID: 20854924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of the tricarboxylic acid (TCA) cycle and the glyoxylate shunt in Saccharomyces cerevisiae to succinic acid production during dough fermentation.
    Rezaei MN; Aslankoohi E; Verstrepen KJ; Courtin CM
    Int J Food Microbiol; 2015 Jul; 204():24-32. PubMed ID: 25828707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory.
    Otero JM; Cimini D; Patil KR; Poulsen SG; Olsson L; Nielsen J
    PLoS One; 2013; 8(1):e54144. PubMed ID: 23349810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae to improve succinic acid production based on metabolic profiling.
    Ito Y; Hirasawa T; Shimizu H
    Biosci Biotechnol Biochem; 2014; 78(1):151-9. PubMed ID: 25036498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value.
    Yan D; Wang C; Zhou J; Liu Y; Yang M; Xing J
    Bioresour Technol; 2014 Mar; 156():232-9. PubMed ID: 24508660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae.
    Raab AM; Lang C
    Bioeng Bugs; 2011; 2(2):120-3. PubMed ID: 21637001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH.
    Cui Z; Gao C; Li J; Hou J; Lin CSK; Qi Q
    Metab Eng; 2017 Jul; 42():126-133. PubMed ID: 28627452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida krusei produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation.
    Nakayama S; Morita T; Negishi H; Ikegami T; Sakaki K; Kitamoto D
    FEMS Yeast Res; 2008 Aug; 8(5):706-14. PubMed ID: 18399986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genomic and transcriptomic analysis of Saccharomyces cerevisiae isolates with focus in succinic acid production.
    Franco-Duarte R; Bessa D; Gonçalves F; Martins R; Silva-Ferreira AC; Schuller D; Sampaio P; Pais C
    FEMS Yeast Res; 2017 Sep; 17(6):. PubMed ID: 28910984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Key process conditions for production of C(4) dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain.
    Zelle RM; de Hulster E; Kloezen W; Pronk JT; van Maris AJ
    Appl Environ Microbiol; 2010 Feb; 76(3):744-50. PubMed ID: 20008165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of excess succinate and retrograde control of metabolite accumulation in yeast tricarboxylic cycle mutants.
    Lin AP; Anderson SL; Minard KI; McAlister-Henn L
    J Biol Chem; 2011 Sep; 286(39):33737-46. PubMed ID: 21841001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica.
    Yuzbashev TV; Yuzbasheva EY; Sobolevskaya TI; Laptev IA; Vybornaya TV; Larina AS; Matsui K; Fukui K; Sineoky SP
    Biotechnol Bioeng; 2010 Nov; 107(4):673-82. PubMed ID: 20632369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The impact of MIG1 and/or MIG2 disruption on aerobic metabolism of succinate dehydrogenase negative Saccharomyces cerevisiae.
    Cao H; Yue M; Li S; Bai X; Zhao X; Du Y
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):733-8. PubMed ID: 20938771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic evolution and (13) C flux analysis of a succinate dehydrogenase deficient strain of Yarrowia lipolytica.
    Yuzbashev TV; Bondarenko PY; Sobolevskaya TI; Yuzbasheva EY; Laptev IA; Kachala VV; Fedorov AS; Vybornaya TV; Larina AS; Sineoky SP
    Biotechnol Bioeng; 2016 Nov; 113(11):2425-32. PubMed ID: 27182846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restoring of Glucose Metabolism of Engineered Yarrowia lipolytica for Succinic Acid Production via a Simple and Efficient Adaptive Evolution Strategy.
    Yang X; Wang H; Li C; Lin CSK
    J Agric Food Chem; 2017 May; 65(20):4133-4139. PubMed ID: 28474529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.
    Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP
    ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial membrane transporters as attractive targets for the fermentative production of succinic acid from glycerol in Saccharomyces cerevisiae.
    Rendulić T; Perpelea A; Ortiz JPR; Casal M; Nevoigt E
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38587863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production.
    Agren R; Otero JM; Nielsen J
    J Ind Microbiol Biotechnol; 2013 Jul; 40(7):735-47. PubMed ID: 23608777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon dioxide fixation via production of succinic acid from glycerol in engineered Saccharomyces cerevisiae.
    Malubhoy Z; Bahia FM; de Valk SC; de Hulster E; Rendulić T; Ortiz JPR; Xiberras J; Klein M; Mans R; Nevoigt E
    Microb Cell Fact; 2022 May; 21(1):102. PubMed ID: 35643577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling growth and succinic acid production in an industrial Saccharomyces cerevisiae strain.
    Liu Y; Esen O; Pronk JT; van Gulik WM
    Biotechnol Bioeng; 2021 Apr; 118(4):1576-1586. PubMed ID: 33410171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.