These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 20855022)
21. Screening for subclinical ketosis in dairy cattle by Fourier transform infrared spectrometry. de Roos AP; van den Bijgaart HJ; Hørlyk J; de Jong G J Dairy Sci; 2007 Apr; 90(4):1761-6. PubMed ID: 17369216 [TBL] [Abstract][Full Text] [Related]
22. Genetic parameters for major milk fatty acids and milk production traits of Dutch Holstein-Friesians. Stoop WM; van Arendonk JA; Heck JM; van Valenberg HJ; Bovenhuis H J Dairy Sci; 2008 Jan; 91(1):385-94. PubMed ID: 18096963 [TBL] [Abstract][Full Text] [Related]
23. Milk fatty acids II: prediction of the production of individual fatty acids in bovine milk. Moate PJ; Chalupa W; Boston RC; Lean IJ J Dairy Sci; 2008 Mar; 91(3):1175-88. PubMed ID: 18292274 [TBL] [Abstract][Full Text] [Related]
24. Bayesian regression models outperform partial least squares methods for predicting milk components and technological properties using infrared spectral data. Ferragina A; de los Campos G; Vazquez AI; Cecchinato A; Bittante G J Dairy Sci; 2015 Nov; 98(11):8133-51. PubMed ID: 26387015 [TBL] [Abstract][Full Text] [Related]
25. Genetic parameter estimation for major milk fatty acids in Alpine and Saanen primiparous goats. Maroteau C; Palhière I; Larroque H; Clément V; Ferrand M; Tosser-Klopp G; Rupp R J Dairy Sci; 2014 May; 97(5):3142-55. PubMed ID: 24612796 [TBL] [Abstract][Full Text] [Related]
26. Imputation of missing milk Fourier transform mid-infrared spectra using existing milk spectral databases: A strategy to improve the reliability of breeding values and predictive models. Soyeurt H; Wu XL; Grelet C; van Pelt ML; Gengler N; Dehareng F; Bertozzi C; Burchard J J Dairy Sci; 2023 Dec; 106(12):9095-9104. PubMed ID: 37678782 [TBL] [Abstract][Full Text] [Related]
27. The potential of Fourier transform infrared spectroscopy of milk samples to predict energy intake and efficiency in dairy cows. McParland S; Berry DP J Dairy Sci; 2016 May; 99(5):4056-4070. PubMed ID: 26947296 [TBL] [Abstract][Full Text] [Related]
28. Prediction of β-lactoglobulin genotypes based on milk Fourier transform infrared spectra. Rutten MJ; Bovenhuis H; Heck JM; van Arendonk JA J Dairy Sci; 2011 Aug; 94(8):4183-8. PubMed ID: 21787953 [TBL] [Abstract][Full Text] [Related]
29. DGAT1 underlies large genetic variation in milk-fat composition of dairy cows. Schennink A; Stoop WM; Visker MH; Heck JM; Bovenhuis H; van der Poel JJ; van Valenberg HJ; van Arendonk JA Anim Genet; 2007 Oct; 38(5):467-73. PubMed ID: 17894561 [TBL] [Abstract][Full Text] [Related]
30. Development of Fourier transform mid-infrared calibrations to predict acetone, β-hydroxybutyrate, and citrate contents in bovine milk through a European dairy network. Grelet C; Bastin C; Gelé M; Davière JB; Johan M; Werner A; Reding R; Fernandez Pierna JA; Colinet FG; Dardenne P; Gengler N; Soyeurt H; Dehareng F J Dairy Sci; 2016 Jun; 99(6):4816-4825. PubMed ID: 27016835 [TBL] [Abstract][Full Text] [Related]
31. Direct and indirect predictions of enteric methane daily production, yield, and intensity per unit of milk and cheese, from fatty acids and milk Fourier-transform infrared spectra. Bittante G; Cipolat-Gotet C J Dairy Sci; 2018 Aug; 101(8):7219-7235. PubMed ID: 29803412 [TBL] [Abstract][Full Text] [Related]
32. Short communication: estimates of genetic variation of milk fatty acids in US Holstein cows. Bobe G; Minick Bormann JA; Lindberg GL; Freeman AE; Beitz DC J Dairy Sci; 2008 Mar; 91(3):1209-13. PubMed ID: 18292278 [TBL] [Abstract][Full Text] [Related]
33. Prediction of milk fatty acid content with mid-infrared spectroscopy in Canadian dairy cattle using differently distributed model development sets. Fleming A; Schenkel FS; Chen J; Malchiodi F; Bonfatti V; Ali RA; Mallard B; Corredig M; Miglior F J Dairy Sci; 2017 Jun; 100(6):5073-5081. PubMed ID: 28434722 [TBL] [Abstract][Full Text] [Related]
34. An attempt at predicting blood β-hydroxybutyrate from Fourier-transform mid-infrared spectra of milk using multivariate mixed models in Polish dairy cattle. Belay TK; Dagnachew BS; Kowalski ZM; Ådnøy T J Dairy Sci; 2017 Aug; 100(8):6312-6326. PubMed ID: 28571989 [TBL] [Abstract][Full Text] [Related]
35. Nondestructive determination of oil content and fatty acid composition in perilla seeds by near-infrared spectroscopy. Kim KS; Park SH; Choung MG J Agric Food Chem; 2007 Mar; 55(5):1679-85. PubMed ID: 17288449 [TBL] [Abstract][Full Text] [Related]
36. Genetic analysis of the Fourier-transform infrared spectra of bovine milk with emphasis on individual wavelengths related to specific chemical bonds. Bittante G; Cecchinato A J Dairy Sci; 2013 Sep; 96(9):5991-6006. PubMed ID: 23810593 [TBL] [Abstract][Full Text] [Related]
37. Robustness of near-infrared calibration models for the prediction of milk constituents during the milking process. Melfsen A; Hartung E; Haeussermann A J Dairy Res; 2013 Feb; 80(1):103-12. PubMed ID: 23182024 [TBL] [Abstract][Full Text] [Related]
38. Short communication: Composition of milk protein and milk fatty acids is stable for cows differing in genetic merit for milk production. Bobe G; Lindberg GL; Freeman AE; Beitz DC J Dairy Sci; 2007 Aug; 90(8):3955-60. PubMed ID: 17639007 [TBL] [Abstract][Full Text] [Related]
39. Screening of dairy cows for ketosis by use of infrared spectroscopy and multivariate calibration. Hansen PW J Dairy Sci; 1999 Sep; 82(9):2005-10. PubMed ID: 10509260 [TBL] [Abstract][Full Text] [Related]
40. Authentication analysis of cod liver oil from beef fat using fatty acid composition and FTIR spectra. Rohman A; Man YB Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Nov; 28(11):1469-74. PubMed ID: 21827226 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]