BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 20855069)

  • 1. Biomechanical analysis of the sliding hip screw, cannulated screws and Targon1 FN in intracapsular hip fractures in cadaver femora.
    Brandt E; Verdonschot N
    Injury; 2011 Feb; 42(2):183-7. PubMed ID: 20855069
    [No Abstract]   [Full Text] [Related]  

  • 2. Biomechanical analysis of the percutaneous compression plate and sliding hip screw in intracapsular hip fractures: experimental assessment using synthetic and cadaver bones.
    Brandt E; Verdonschot N; van Vugt A; van Kampen A
    Injury; 2006 Oct; 37(10):979-83. PubMed ID: 16934259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dynamic locking blade plate, a new implant for intracapsular hip fractures: biomechanical comparison with the sliding hip screw and Twin Hook.
    Roerdink WH; Aalsma AM; Nijenbanning G; van Walsum AD
    Injury; 2009 Mar; 40(3):283-7. PubMed ID: 19193375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Basicervical fractures of the proximal femur. A biomechanical study of 3 internal fixation techniques.
    Blair B; Koval KJ; Kummer F; Zuckerman JD
    Clin Orthop Relat Res; 1994 Sep; (306):256-63. PubMed ID: 8070205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomechanical evaluation of dynamic hip screw with bone cement augmentation in normal bone].
    Li N; Peng A; Chai Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Dec; 21(12):1299-301. PubMed ID: 18277669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical comparison of two side plate fixation techniques in an unstable intertrochanteric osteotomy model: Sliding Hip Screw and Percutaneous Compression Plate.
    Krischak GD; Augat P; Beck A; Arand M; Baier B; Blakytny R; Gebhard F; Claes L
    Clin Biomech (Bristol, Avon); 2007 Dec; 22(10):1112-8. PubMed ID: 17900766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of calcium phosphate cement-augmented fixation of unstable intertrochanteric fractures.
    Elder S; Frankenburg E; Goulet J; Yetkinler D; Poser R; Goldstein S
    J Orthop Trauma; 2000 Aug; 14(6):386-93. PubMed ID: 11001411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimally invasive screw plates for surgery of unstable intertrochanteric femoral fractures: a biomechanical comparative study.
    Ropars M; Mitton D; Skalli W
    Clin Biomech (Bristol, Avon); 2008 Oct; 23(8):1012-7. PubMed ID: 18579266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical determination of the optimal number of fixation screws for the sliding hip screw plate.
    Reich SM; Jaffe WL; Kummer FJ
    Bull Hosp Jt Dis; 1993-1995; 53(4):43-4. PubMed ID: 8829595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Does cancellous bone compaction due to insertion of a blade implant influence the cut-out resistance? A biomechanical study.
    Wähnert D; Gudushauri P; Schiuma D; Richards G; Windolf M
    Clin Biomech (Bristol, Avon); 2010 Dec; 25(10):1053-7. PubMed ID: 20800326
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research advance of dynamic hip screw internal fixation in treatment of intertrochanteric fractures].
    Li H; Zhang Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Oct; 19(10):839-42. PubMed ID: 16274138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anterior or posterior obliquity of the lag screw in the lateral view--does it affect the sliding characteristics on unstable trochanteric fractures?
    Mereddy PK; Sunderamoorthy D
    Injury; 2008 Jul; 39(7):822. PubMed ID: 18534592
    [No Abstract]   [Full Text] [Related]  

  • 13. A short plate compression screw with diagonal bolts--a biomechanical evaluation performed experimentally and by numerical computation.
    Peleg E; Mosheiff R; Liebergall M; Mattan Y
    Clin Biomech (Bristol, Avon); 2006 Nov; 21(9):963-8. PubMed ID: 16893595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A biomechanical study of simulated femoral neck fracture fixation by cannulated screws: effects of placement angle and number of screws.
    Walker E; Mukherjee DP; Ogden AL; Sadasivan KK; Albright JA
    Am J Orthop (Belle Mead NJ); 2007 Dec; 36(12):680-4. PubMed ID: 18264547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Torsion and bending analysis of internal fixation techniques for femoral neck fractures: the role of implant design and bone density.
    Swiontkowski MF; Harrington RM; Keller TS; Van Patten PK
    J Orthop Res; 1987; 5(3):433-44. PubMed ID: 3625366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Should extramedullary fixations for hip fractures be removed after bone union?
    Eberle S; Wutte C; Bauer C; von Oldenburg G; Augat P
    Clin Biomech (Bristol, Avon); 2011 May; 26(4):410-4. PubMed ID: 21236532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stress-riser fractures of the hip after sliding screw plate fixation.
    DiMaio FR; Haher TR; Splain SH; Mani VJ
    Orthop Rev; 1992 Oct; 21(10):1229-31, 1238. PubMed ID: 1340775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correct placement of the screw or nail in trochanteric fractures. Effect of the initial placement in the migration.
    Galanakis IA; Steriopoulos KA; Dretakis EK
    Clin Orthop Relat Res; 1995 Apr; (313):206-13. PubMed ID: 7641482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fixation of intertrochanteric hip fractures with sliding devices.
    Kyle RF
    Instr Course Lect; 1984; 33():197-203. PubMed ID: 6546101
    [No Abstract]   [Full Text] [Related]  

  • 20. Biomechanical evaluation of the Ender's pins, the Harris nail, and the dynamic hip screw for the unstable intertrochanteric fracture.
    Gurtler RA; Jacobs RR; Jacobs CR
    Clin Orthop Relat Res; 1986 May; (206):109-12. PubMed ID: 3708962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.