BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 20855139)

  • 1. Ecological risk of anthropogenic pollutants to reptiles: Evaluating assumptions of sensitivity and exposure.
    Weir SM; Suski JG; Salice CJ
    Environ Pollut; 2010 Dec; 158(12):3596-606. PubMed ID: 20855139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment and management of risk to wildlife from cadmium.
    Burger J
    Sci Total Environ; 2008 Jan; 389(1):37-45. PubMed ID: 17910979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the relative importance of oral and dermal contaminant exposure in reptiles: insights from studies using the western fence lizard (Sceloporus occidentalis).
    Weir SM; Talent LG; Anderson TA; Salice CJ
    PLoS One; 2014; 9(6):e99666. PubMed ID: 24941063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the application of loss functions in determining assessment factors for ecological risk.
    Hickey GL; Craig PS; Hart A
    Ecotoxicol Environ Saf; 2009 Feb; 72(2):293-300. PubMed ID: 18691758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New developments in exposure assessment: the impact on the practice of health risk assessment and epidemiological studies.
    Nieuwenhuijsen M; Paustenbach D; Duarte-Davidson R
    Environ Int; 2006 Dec; 32(8):996-1009. PubMed ID: 16875734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential application of population models in the European ecological risk assessment of chemicals. II. Review of models and their potential to address environmental protection aims.
    Galic N; Hommen U; Baveco JM; van den Brink PJ
    Integr Environ Assess Manag; 2010 Jul; 6(3):338-60. PubMed ID: 20821698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling population exposures to outdoor sources of hazardous air pollutants.
    Ozkaynak H; Palma T; Touma JS; Thurman J
    J Expo Sci Environ Epidemiol; 2008 Jan; 18(1):45-58. PubMed ID: 17878926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish.
    Letcher RJ; Bustnes JO; Dietz R; Jenssen BM; Jørgensen EH; Sonne C; Verreault J; Vijayan MM; Gabrielsen GW
    Sci Total Environ; 2010 Jul; 408(15):2995-3043. PubMed ID: 19910021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into reptile dermal contaminant exposure: Reptile skin permeability to pesticides.
    Weir SM; Talent LG; Anderson TA; Salice CJ
    Chemosphere; 2016 Jul; 154():17-22. PubMed ID: 27037770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: how to cumulate?
    Wilkinson CF; Christoph GR; Julien E; Kelley JM; Kronenberg J; McCarthy J; Reiss R
    Regul Toxicol Pharmacol; 2000 Feb; 31(1):30-43. PubMed ID: 10715222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geo-referencing of probabilistic risk of new chemicals in rivers.
    Verdonck FA; Janssen CR; Jaworska J; Vanrolleghem PA
    Water Sci Technol; 2003; 48(3):39-46. PubMed ID: 14518853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of wildlife hazard levels using interspecies correlation models and standard laboratory rodent toxicity data.
    Awkerman JA; Raimondo S; Barron MG
    J Toxicol Environ Health A; 2009; 72(24):1604-9. PubMed ID: 20077235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Uncertainty analysis of quantitative risk assessment in temporally variable exposures: model observations based on biological and epidemiological risk models].
    Neus H; Schümann M; Koss G
    Schriftenr Ver Wasser Boden Lufthyg; 1999; 103():140-200. PubMed ID: 10719709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An examination of ecological risk assessment and management practices.
    Hope BK
    Environ Int; 2006 Dec; 32(8):983-95. PubMed ID: 16843527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of read-across and tiered exposure assessment in risk assessment under REACH--a case study on a phase-in substance.
    Vink SR; Mikkers J; Bouwman T; Marquart H; Kroese ED
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):64-71. PubMed ID: 20394791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validity of fish, birds and mammals as surrogates for amphibians and reptiles in pesticide toxicity assessment.
    Ortiz-Santaliestra ME; Maia JP; Egea-Serrano A; Lopes I
    Ecotoxicology; 2018 Sep; 27(7):819-833. PubMed ID: 29492806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects from environmental Mn exposures: a review of the evidence from non-occupational exposure studies.
    Hudnell HK
    Neurotoxicology; 1999; 20(2-3):379-97. PubMed ID: 10385898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of exposure reconstruction in occupational human health risk assessment: current methods and a recommended framework.
    Sahmel J; Devlin K; Paustenbach D; Hollins D; Gaffney S
    Crit Rev Toxicol; 2010 Oct; 40(9):799-843. PubMed ID: 20722488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retrospective ecotoxicological data and current information needs for terrestrial vertebrates residing in coastal habitat of the United States.
    Rattner BA; Eisenreich KM; Golden NH; McKernan MA; Hothem RL; Custer TW
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):257-65. PubMed ID: 16075359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially explicit method for ecotoxicological risk assessment of pesticides for birds.
    Sala S; Cavalli M; Vighi M
    Ecotoxicol Environ Saf; 2010 Mar; 73(3):213-21. PubMed ID: 20074804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.