These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. A CMOS magnetic microbead-based capacitive biosensor array with on-chip electromagnetic manipulation. Chang AY; Lu MS Biosens Bioelectron; 2013 Jul; 45():6-12. PubMed ID: 23454336 [TBL] [Abstract][Full Text] [Related]
24. Direct protein detection with a nano-interdigitated array gate MOSFET. Tang X; Jonas AM; Nysten B; Demoustier-Champagne S; Blondeau F; Prévot PP; Pampin R; Godfroid E; Iñiguez B; Colinge JP; Raskin JP; Flandre D; Bayot V Biosens Bioelectron; 2009 Aug; 24(12):3531-7. PubMed ID: 19501500 [TBL] [Abstract][Full Text] [Related]
25. CMOS capacitive biosensors for highly sensitive biosensing applications. Chang AY; Lu MS Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4102-5. PubMed ID: 24110634 [TBL] [Abstract][Full Text] [Related]
26. DNA/Poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Lin X; Kang G; Lu L Bioelectrochemistry; 2007 May; 70(2):235-44. PubMed ID: 17079195 [TBL] [Abstract][Full Text] [Related]
27. Anodized aluminum oxide-based capacitance sensors for the direct detection of DNA hybridization. Kang B; Yeo U; Yoo KH Biosens Bioelectron; 2010 Mar; 25(7):1592-6. PubMed ID: 20022483 [TBL] [Abstract][Full Text] [Related]
28. Towards CMOS Integrated Microfluidics Using Dielectrophoretic Immobilization. Matbaechi Ettehad H; Yadav RK; Guha S; Wenger C Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31195725 [TBL] [Abstract][Full Text] [Related]
29. Selective response of dopamine in the presence of ascorbic acid on L-cysteine self-assembled gold electrode. Hu G; Liu Y; Zhao J; Cui S; Yang Z; Zhang Y Bioelectrochemistry; 2006 Oct; 69(2):254-7. PubMed ID: 16698326 [TBL] [Abstract][Full Text] [Related]
31. Measurement of electrical activity of long-term mammalian neuronal networks on semiconductor neurosensor chips and comparison with conventional microelectrode arrays. Krause G; Lehmann S; Lehmann M; Freund I; Schreiber E; Baumann W Biosens Bioelectron; 2006 Jan; 21(7):1272-82. PubMed ID: 16006112 [TBL] [Abstract][Full Text] [Related]
32. Silicon nanowire arrays for label-free detection of DNA. Gao Z; Agarwal A; Trigg AD; Singh N; Fang C; Tung CH; Fan Y; Buddharaju KD; Kong J Anal Chem; 2007 May; 79(9):3291-7. PubMed ID: 17407259 [TBL] [Abstract][Full Text] [Related]
33. Biosensor system-on-a-chip including CMOS-based signal processing circuits and 64 carbon nanotube-based sensors for the detection of a neurotransmitter. Lee BY; Seo SM; Lee DJ; Lee M; Lee J; Cheon JH; Cho E; Lee H; Chung IY; Park YJ; Kim S; Hong S Lab Chip; 2010 Apr; 10(7):894-8. PubMed ID: 20300676 [TBL] [Abstract][Full Text] [Related]
34. Ion-exchange voltammetry of dopamine at Nafion-coated glassy carbon electrodes: quantitative features of ion-exchange partition and reassessment on the oxidation mechanism of dopamine in the presence of excess ascorbic acid. Rocha LS; Carapuça HM Bioelectrochemistry; 2006 Oct; 69(2):258-66. PubMed ID: 16713377 [TBL] [Abstract][Full Text] [Related]
35. Interdigitated humidity sensors for a portable clinical microsystem. Laville C; Pellet C IEEE Trans Biomed Eng; 2002 Oct; 49(10):1162-7. PubMed ID: 12374340 [TBL] [Abstract][Full Text] [Related]
36. Amperometric protein sensor - fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer. Rick J; Chou TC Biosens Bioelectron; 2006 Sep; 22(3):329-35. PubMed ID: 16757163 [TBL] [Abstract][Full Text] [Related]
37. Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor. Lin CH; Hsiao CY; Hung CH; Lo YR; Lee CC; Su CJ; Lin HC; Ko FH; Huang TY; Yang YS Chem Commun (Camb); 2008 Nov; (44):5749-51. PubMed ID: 19009069 [TBL] [Abstract][Full Text] [Related]