These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 20855195)
1. Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. Joshi C; Khare SK Bioresour Technol; 2011 Jan; 102(2):1722-6. PubMed ID: 20855195 [TBL] [Abstract][Full Text] [Related]
2. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. Sadaf A; Khare SK Bioresour Technol; 2014 Feb; 153():126-30. PubMed ID: 24362246 [TBL] [Abstract][Full Text] [Related]
3. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Joshi C; Mathur P; Khare SK Bioresour Technol; 2011 Apr; 102(7):4815-9. PubMed ID: 21316957 [TBL] [Abstract][Full Text] [Related]
4. Utilization of Jatropha deoiled seed cake for production of cellulases under solid-state fermentation. Dave BR; Sudhir AP; Pansuriya M; Raykundaliya DP; Subramanian RB Bioprocess Biosyst Eng; 2012 Oct; 35(8):1343-53. PubMed ID: 22451079 [TBL] [Abstract][Full Text] [Related]
5. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Mahanta N; Gupta A; Khare SK Bioresour Technol; 2008 Apr; 99(6):1729-35. PubMed ID: 17509877 [TBL] [Abstract][Full Text] [Related]
6. Solid-state fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. Veerabhadrappa MB; Shivakumar SB; Devappa S J Biosci Bioeng; 2014 Feb; 117(2):208-214. PubMed ID: 23958640 [TBL] [Abstract][Full Text] [Related]
7. Detoxification of Jatropha curcas seed cake by a new soil-borne Enterobacter cloacae strain. Zhao YN; Wang HF; Liu JX Lett Appl Microbiol; 2018 Aug; 67(2):197-204. PubMed ID: 29846944 [TBL] [Abstract][Full Text] [Related]
8. Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Pal A; Khanum F Bioresour Technol; 2010 Oct; 101(19):7563-9. PubMed ID: 20478705 [TBL] [Abstract][Full Text] [Related]
9. Co-composting of physic nut (Jatropha curcas) deoiled cake with rice straw and different animal dung. Das M; Uppal HS; Singh R; Beri S; Mohan KS; Gupta VC; Adholeya A Bioresour Technol; 2011 Jun; 102(11):6541-6. PubMed ID: 21489784 [TBL] [Abstract][Full Text] [Related]
10. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. Phengnuam T; Suntornsuk W J Biosci Bioeng; 2013 Feb; 115(2):168-72. PubMed ID: 23014183 [TBL] [Abstract][Full Text] [Related]
11. Xylanase production by Penicillium canescens on soya oil cake in solid-state fermentation. Antoine AA; Jacqueline D; Thonart P Appl Biochem Biotechnol; 2010 Jan; 160(1):50-62. PubMed ID: 19140029 [TBL] [Abstract][Full Text] [Related]
12. Effect of additional carbon source and moisture level on xylanase production by Cochliobolus sativus in solid fermentation. Arabi MI; Jawhar M; Bakri Y Mikrobiologiia; 2011; 80(2):162-5. PubMed ID: 21675218 [TBL] [Abstract][Full Text] [Related]
13. Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Betini JH; Michelin M; Peixoto-Nogueira SC; Jorge JA; Terenzi HF; Polizeli ML Bioprocess Biosyst Eng; 2009 Oct; 32(6):819-24. PubMed ID: 19271244 [TBL] [Abstract][Full Text] [Related]
14. Biodegradation of Jatropha curcas phorbol esters in soil. Devappa RK; Makkar HP; Becker K J Sci Food Agric; 2010 Sep; 90(12):2090-7. PubMed ID: 20632388 [TBL] [Abstract][Full Text] [Related]
15. Bio-detoxification of phorbol esters and other anti-nutrients of Jatropha curcas seed cake by fungal cultures using solid-state fermentation. Sharath BS; Mohankumar BV; Somashekar D Appl Biochem Biotechnol; 2014 Mar; 172(5):2747-57. PubMed ID: 24435764 [TBL] [Abstract][Full Text] [Related]
16. High-level of xylanase production by the thermophilic Paecilomyces themophila J18 on wheat straw in solid-state fermentation. Yang SQ; Yan QJ; Jiang ZQ; Li LT; Tian HM; Wang YZ Bioresour Technol; 2006 Oct; 97(15):1794-800. PubMed ID: 16230011 [TBL] [Abstract][Full Text] [Related]
17. Antifungal activities of ethanolic extract from Jatropha curcas seed cake. Saetae D; Suntornsuk W J Microbiol Biotechnol; 2010 Feb; 20(2):319-24. PubMed ID: 20208435 [TBL] [Abstract][Full Text] [Related]
18. Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Li XT; Jiang ZQ; Li LT; Yang SQ; Feng WY; Fan JY; Kusakabe I Bioresour Technol; 2005 Aug; 96(12):1370-9. PubMed ID: 15792585 [TBL] [Abstract][Full Text] [Related]
19. Hyper production of cellulase-free xylanase by Thermomyces lanuginosus SSBP on bagasse pulp and its application in biobleaching. Manimaran A; Kumar KS; Permaul K; Singh S Appl Microbiol Biotechnol; 2009 Jan; 81(5):887-93. PubMed ID: 18802693 [TBL] [Abstract][Full Text] [Related]
20. Optimization of xylanase production by Thermomyces lanuginosus in solid state fermentation. Gaffney M; Doyle S; Murphy R Biosci Biotechnol Biochem; 2009 Dec; 73(12):2640-4. PubMed ID: 19966485 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]