These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20855200)

  • 1. Nonlinear modelisation of heavy metal removal from aqueous solution using Ulva lactuca algae.
    Zakhama S; Dhaouadi H; M'Henni F
    Bioresour Technol; 2011 Jan; 102(2):786-96. PubMed ID: 20855200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal ion removal from aqueous solution using physic seed hull.
    Mohammad M; Maitra S; Ahmad N; Bustam A; Sen TK; Dutta BK
    J Hazard Mater; 2010 Jul; 179(1-3):363-72. PubMed ID: 20362390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions.
    Ijagbemi CO; Baek MH; Kim DS
    J Hazard Mater; 2009 Jul; 166(1):538-46. PubMed ID: 19131158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of copper from aqueous solution using Ulva fasciata sp.--a marine green algae.
    Kumar YP; King P; Prasad VS
    J Hazard Mater; 2006 Sep; 137(1):367-73. PubMed ID: 16621266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-exchange of Pb2+, Cu2+, Zn2+, Cd2+, and Ni2+ ions from aqueous solution by Lewatit CNP 80.
    Pehlivan E; Altun T
    J Hazard Mater; 2007 Feb; 140(1-2):299-307. PubMed ID: 17045738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon.
    El-Sikaily A; El Nemr A; Khaled A; Abdelwehab O
    J Hazard Mater; 2007 Sep; 148(1-2):216-28. PubMed ID: 17360109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent.
    Meena AK; Mishra GK; Rai PK; Rajagopal C; Nagar PN
    J Hazard Mater; 2005 Jun; 122(1-2):161-70. PubMed ID: 15878798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the kinetics and the adsorption isotherm of cadmium(II) from aqueous solution using green algae (Ulva lactuca) biomass.
    Asnaoui H; Laaziri A; Khalis M
    Water Sci Technol; 2015; 72(9):1505-15. PubMed ID: 26524441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions.
    Unlü N; Ersoz M
    J Hazard Mater; 2006 Aug; 136(2):272-80. PubMed ID: 16442227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.
    Ghassabzadeh H; Mohadespour A; Torab-Mostaedi M; Zaheri P; Maragheh MG; Taheri H
    J Hazard Mater; 2010 May; 177(1-3):950-5. PubMed ID: 20096505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of chemically modified rice husk for the removal of heavy metals from aqueous solution.
    Kayal N; Sinhia PK; Kundu D
    J Environ Sci Eng; 2010 Jan; 52(1):15-8. PubMed ID: 21114100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium.
    Sen Gupta S; Bhattacharyya KG
    J Environ Manage; 2008 Apr; 87(1):46-58. PubMed ID: 17499423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions.
    Oliveira WE; Franca AS; Oliveira LS; Rocha SD
    J Hazard Mater; 2008 Apr; 152(3):1073-81. PubMed ID: 17804159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.
    Wang S; Soudi M; Li L; Zhu ZH
    J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass.
    Sari A; Tuzen M
    J Hazard Mater; 2008 Mar; 152(1):302-8. PubMed ID: 17689186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of seaweed biomass as a biosorbent for metal ions .
    Lau TC; Ang PO; Wong PK
    Water Sci Technol; 2003; 47(10):49-54. PubMed ID: 12862216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of heavy metal ions from aqueous solution by polyrhodanine-encapsulated magnetic nanoparticles.
    Song J; Kong H; Jang J
    J Colloid Interface Sci; 2011 Jul; 359(2):505-11. PubMed ID: 21543080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel complex gel beads composed of hydrolyzed polyacrylamide and chitosan: an effective adsorbent for the removal of heavy metal from aqueous solution.
    Cao J; Tan Y; Che Y; Xin H
    Bioresour Technol; 2010 Apr; 101(7):2558-61. PubMed ID: 19939679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel agricultural waste adsorbent for the removal of lead (II) ions from aqueous solutions.
    Ibrahim MN; Ngah WS; Norliyana MS; Daud WR; Rafatullah M; Sulaiman O; Hashim R
    J Hazard Mater; 2010 Oct; 182(1-3):377-85. PubMed ID: 20619537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.