These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 20855226)
1. Micron particle deposition in a tracheobronchial airway model under different breathing conditions. Inthavong K; Choi LT; Tu J; Ding S; Thien F Med Eng Phys; 2010 Dec; 32(10):1198-212. PubMed ID: 20855226 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways. Xi J; Longest PW Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605 [TBL] [Abstract][Full Text] [Related]
3. Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Farkas A; Balásházy I Comput Biol Med; 2008 Apr; 38(4):508-18. PubMed ID: 18336809 [TBL] [Abstract][Full Text] [Related]
4. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree. Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069 [TBL] [Abstract][Full Text] [Related]
5. Inspiratory and expiratory aerosol deposition in the upper airway. Verbanck S; Kalsi HS; Biddiscombe MF; Agnihotri V; Belkassem B; Lacor C; Usmani OS Inhal Toxicol; 2011 Feb; 23(2):104-11. PubMed ID: 21309663 [TBL] [Abstract][Full Text] [Related]
6. Flow Structure and Particle Deposition Analyses for Optimization of a Pressurized Metered Dose Inhaler (pMDI) in a Model of Tracheobronchial Airway. Ahookhosh K; Saidi M; Mohammadpourfard M; Aminfar H; Hamishehkar H; Farnoud A; Schmid O Eur J Pharm Sci; 2021 Sep; 164():105911. PubMed ID: 34129919 [TBL] [Abstract][Full Text] [Related]
7. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. Worth Longest P; Vinchurkar S J Biomech; 2007; 40(2):305-16. PubMed ID: 16533511 [TBL] [Abstract][Full Text] [Related]
8. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Xi J; Longest PW Ann Biomed Eng; 2007 Apr; 35(4):560-81. PubMed ID: 17237991 [TBL] [Abstract][Full Text] [Related]
9. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data. Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586 [TBL] [Abstract][Full Text] [Related]
10. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. Xi J; Longest PW; Martonen TB J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247 [TBL] [Abstract][Full Text] [Related]
11. Flow patterns and deposition fraction of particles in the range of 0.1-10μm at trachea and the first third generations under different breathing conditions. Saber EM; Heydari G Comput Biol Med; 2012 May; 42(5):631-8. PubMed ID: 22445097 [TBL] [Abstract][Full Text] [Related]
12. An adjustable triple-bifurcation unit model for air-particle flow simulations in human tracheobronchial airways. Kleinstreuer C; Zhang Z J Biomech Eng; 2009 Feb; 131(2):021007. PubMed ID: 19102566 [TBL] [Abstract][Full Text] [Related]
13. Simulation of turbulent airflow using a CT based upper airway model of a racehorse. Rakesh V; Datta AK; Ducharme NG; Pease AP J Biomech Eng; 2008 Jun; 130(3):031011. PubMed ID: 18532860 [TBL] [Abstract][Full Text] [Related]
15. Computational analysis of micron-particle deposition in a human triple bifurcation airway model. Zhang Z; Kleinstreuer C; Kim CS Comput Methods Biomech Biomed Engin; 2002 Apr; 5(2):135-47. PubMed ID: 12186723 [TBL] [Abstract][Full Text] [Related]
16. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. Xi J; Longest PW J Biomech Eng; 2008 Feb; 130(1):011008. PubMed ID: 18298184 [TBL] [Abstract][Full Text] [Related]
17. A three-dimensional model of tracheobronchial particle distribution during mucociliary clearance in the human respiratory tract. Sturm R Z Med Phys; 2013 May; 23(2):111-9. PubMed ID: 23477913 [TBL] [Abstract][Full Text] [Related]
18. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Wang SM; Inthavong K; Wen J; Tu JY; Xue CL Respir Physiol Neurobiol; 2009 May; 166(3):142-51. PubMed ID: 19442930 [TBL] [Abstract][Full Text] [Related]
19. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung. Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963 [TBL] [Abstract][Full Text] [Related]
20. Deposition and clearance of 2 micron particles in the tracheobronchial tree of normal subjects--smokers and nonsmokers. Lourenço RV; Klimek MF; Borowski CJ J Clin Invest; 1971 Jul; 50(7):1411-20. PubMed ID: 5090057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]