These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 20855317)
1. The rose petal effect and the modes of superhydrophobicity. Bhushan B; Nosonovsky M Philos Trans A Math Phys Eng Sci; 2010 Oct; 368(1929):4713-28. PubMed ID: 20855317 [TBL] [Abstract][Full Text] [Related]
2. Observation of the rose petal effect over single- and dual-scale roughness surfaces. Yeh KY; Cho KH; Yeh YH; Promraksa A; Huang CH; Hsu CC; Chen LJ Nanotechnology; 2014 Aug; 25(34):345303. PubMed ID: 25100802 [TBL] [Abstract][Full Text] [Related]
3. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion. Liu M; Zheng Y; Zhai J; Jiang L Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162 [TBL] [Abstract][Full Text] [Related]
4. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces. Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866 [TBL] [Abstract][Full Text] [Related]
5. Dynamic wetting and spreading and the role of topography. McHale G; Newton MI; Shirtcliffe NJ J Phys Condens Matter; 2009 Nov; 21(46):464122. PubMed ID: 21715886 [TBL] [Abstract][Full Text] [Related]
6. Direct observation of wetting behavior of water drops on single micro-scale roughness surfaces of rose petal effect. Lin HP; Chen LJ J Colloid Interface Sci; 2021 Dec; 603():539-549. PubMed ID: 34216950 [TBL] [Abstract][Full Text] [Related]
7. One pot synthesis of opposing 'rose petal' and 'lotus leaf' superhydrophobic materials with zinc oxide nanorods. Myint MT; Hornyak GL; Dutta J J Colloid Interface Sci; 2014 Feb; 415():32-8. PubMed ID: 24267327 [TBL] [Abstract][Full Text] [Related]
8. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition. Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480 [TBL] [Abstract][Full Text] [Related]
9. Petal effect: a superhydrophobic state with high adhesive force. Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016 [TBL] [Abstract][Full Text] [Related]
10. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
11. Patterned nonadhesive surfaces: superhydrophobicity and wetting regime transitions. Nosonovsky M; Bhushan B Langmuir; 2008 Feb; 24(4):1525-33. PubMed ID: 18072794 [TBL] [Abstract][Full Text] [Related]
12. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces. Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793 [TBL] [Abstract][Full Text] [Related]
13. Understanding the wettability of rough surfaces using simultaneous optical and electrochemical analysis of sessile droplets. Zahiri B; Sow PK; Kung CH; Mérida W J Colloid Interface Sci; 2017 Sep; 501():34-44. PubMed ID: 28433883 [TBL] [Abstract][Full Text] [Related]
14. Slippery Wenzel State. Dai X; Stogin BB; Yang S; Wong TS ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154 [TBL] [Abstract][Full Text] [Related]
15. Wetting transitions in adhesive surfaces of polystyrene: The petal effect. Jonguitud-Flores S; Yáñez-Soto B; Pérez E; Sánchez-Balderas G J Colloid Interface Sci; 2024 Nov; 674():178-185. PubMed ID: 38925063 [TBL] [Abstract][Full Text] [Related]
16. Equilibrium contact angles of liquid droplets on ideal rough solids. Kang HC; Jacobi AM Langmuir; 2011 Dec; 27(24):14910-8. PubMed ID: 22053925 [TBL] [Abstract][Full Text] [Related]
17. Mean-field theory of liquid droplets on roughened solid surfaces: application to superhydrophobicity. Porcheron F; Monson PA Langmuir; 2006 Feb; 22(4):1595-601. PubMed ID: 16460079 [TBL] [Abstract][Full Text] [Related]
18. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures. Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928 [TBL] [Abstract][Full Text] [Related]
19. Progress in understanding wetting transitions on rough surfaces. Bormashenko E Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103 [TBL] [Abstract][Full Text] [Related]
20. Contact-angle hysteresis on super-hydrophobic surfaces. McHale G; Shirtcliffe NJ; Newton MI Langmuir; 2004 Nov; 20(23):10146-9. PubMed ID: 15518506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]