These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 20855501)

  • 1. The cell biology of vision.
    Sung CH; Chuang JZ
    J Cell Biol; 2010 Sep; 190(6):953-63. PubMed ID: 20855501
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin phosphorylation: from terminating single photon responses to photoreceptor dark adaptation.
    Arshavsky VY
    Trends Neurosci; 2002 Mar; 25(3):124-6. PubMed ID: 11852136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phototransduction in mouse rods and cones.
    Fu Y; Yau KW
    Pflugers Arch; 2007 Aug; 454(5):805-19. PubMed ID: 17226052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal resolution of single-photon responses in primate rod photoreceptors and limits imposed by cellular noise.
    Field GD; Uzzell V; Chichilnisky EJ; Rieke F
    J Neurophysiol; 2019 Jan; 121(1):255-268. PubMed ID: 30485153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phototransduction early steps model based on Beer-Lambert optical law.
    Salido EM; Servalli LN; Gomez JC; Verrastro C
    Vision Res; 2017 Feb; 131():75-81. PubMed ID: 28062154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CNTF negatively regulates the phototransduction machinery in rod photoreceptors: implication for light-induced photostasis plasticity.
    Wen R; Song Y; Liu Y; Li Y; Zhao L; Laties AM
    Adv Exp Med Biol; 2008; 613():407-13. PubMed ID: 18188971
    [No Abstract]   [Full Text] [Related]  

  • 7. Bleaching desensitization: background and current challenges.
    Pepperberg DR
    Vision Res; 2003 Dec; 43(28):3011-9. PubMed ID: 14611937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position of rhodopsin photoisomerization on the disk surface confers variability to the rising phase of the single photon response in vertebrate rod photoreceptors.
    Caruso G; Klaus CJ; Hamm HE; Gurevich VV; Makino CL; DiBenedetto E
    PLoS One; 2020; 15(10):e0240527. PubMed ID: 33052986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How rods respond to single photons: Key adaptations of a G-protein cascade that enable vision at the physical limit of perception.
    Reingruber J; Holcman D; Fain GL
    Bioessays; 2015 Nov; 37(11):1243-52. PubMed ID: 26354340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of rod phototransduction machinery by ciliary neurotrophic factor.
    Wen R; Song Y; Kjellstrom S; Tanikawa A; Liu Y; Li Y; Zhao L; Bush RA; Laties AM; Sieving PA
    J Neurosci; 2006 Dec; 26(52):13523-30. PubMed ID: 17192435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhodopsin trafficking and its role in retinal dystrophies.
    Sung CH; Tai AW
    Int Rev Cytol; 2000; 195():215-67. PubMed ID: 10603577
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autophagy in
    Wen RH; Stanar P; Tam B; Moritz OL
    Autophagy; 2019 Nov; 15(11):1970-1989. PubMed ID: 30975014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Physiology of the visual retinal signal: From phototransduction to the visual cycle].
    Salesse C
    J Fr Ophtalmol; 2017 Mar; 40(3):239-250. PubMed ID: 28318721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical and computational modelling of spatio-temporal signalling in rod phototransduction.
    Caruso G; Khanal H; Alexiades V; Rieke F; Hamm HE; DiBenedetto E
    Syst Biol (Stevenage); 2005 Sep; 152(3):119-37. PubMed ID: 16986276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Essential and synergistic roles of RP1 and RP1L1 in rod photoreceptor axoneme and retinitis pigmentosa.
    Yamashita T; Liu J; Gao J; LeNoue S; Wang C; Kaminoh J; Bowne SJ; Sullivan LS; Daiger SP; Zhang K; Fitzgerald ME; Kefalov VJ; Zuo J
    J Neurosci; 2009 Aug; 29(31):9748-60. PubMed ID: 19657028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrestin-rhodopsin binding stoichiometry in isolated rod outer segment membranes depends on the percentage of activated receptors.
    Sommer ME; Hofmann KP; Heck M
    J Biol Chem; 2011 Mar; 286(9):7359-69. PubMed ID: 21169358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in our understanding of rhodopsin and phototransduction.
    Pepe IM
    Prog Retin Eye Res; 2001 Nov; 20(6):733-59. PubMed ID: 11587916
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evolution of proteins involved in vertebrate phototransduction.
    Hisatomi O; Tokunaga F
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Dec; 133(4):509-22. PubMed ID: 12470815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.