These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 20855593)

  • 1. Autotrophic ammonia oxidation by soil thaumarchaea.
    Zhang LM; Offre PR; He JZ; Verhamme DT; Nicol GW; Prosser JI
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17240-5. PubMed ID: 20855593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene.
    Offre P; Prosser JI; Nicol GW
    FEMS Microbiol Ecol; 2009 Oct; 70(1):99-108. PubMed ID: 19656195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Urease gene-containing Archaea dominate autotrophic ammonia oxidation in two acid soils.
    Lu L; Jia Z
    Environ Microbiol; 2013 Jun; 15(6):1795-809. PubMed ID: 23298189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures.
    Wu Y; Ke X; Hernández M; Wang B; Dumont MG; Jia Z; Conrad R
    Appl Environ Microbiol; 2013 May; 79(9):3076-84. PubMed ID: 23455342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.
    Zhang LM; Hu HW; Shen JP; He JZ
    ISME J; 2012 May; 6(5):1032-45. PubMed ID: 22134644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.
    Stopnisek N; Gubry-Rangin C; Höfferle S; Nicol GW; Mandic-Mulec I; Prosser JI
    Appl Environ Microbiol; 2010 Nov; 76(22):7626-34. PubMed ID: 20889787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China.
    Wang S; Wang Y; Feng X; Zhai L; Zhu G
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):779-87. PubMed ID: 21253721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High abundance of ammonia-oxidizing archaea in acidified subtropical forest soils in southern China after long-term N deposition.
    Isobe K; Koba K; Suwa Y; Ikutani J; Fang Y; Yoh M; Mo J; Otsuka S; Senoo K
    FEMS Microbiol Ecol; 2012 Apr; 80(1):193-203. PubMed ID: 22224831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaea predominate among ammonia-oxidizing prokaryotes in soils.
    Leininger S; Urich T; Schloter M; Schwark L; Qi J; Nicol GW; Prosser JI; Schuster SC; Schleper C
    Nature; 2006 Aug; 442(7104):806-9. PubMed ID: 16915287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of Active Ammonia Oxidizers and Nitrification Activity in Eutrophic Lake Sediments to Nitrogen and Temperature.
    Wu L; Han C; Zhu G; Zhong W
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31253684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA.
    Adair KL; Schwartz E
    Microb Ecol; 2008 Oct; 56(3):420-6. PubMed ID: 18204798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil.
    Jia Z; Conrad R
    Environ Microbiol; 2009 Jul; 11(7):1658-71. PubMed ID: 19236445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria.
    Nicol GW; Leininger S; Schleper C; Prosser JI
    Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of thaumarchaeal ammonia oxidation by ammonia derived from organic nitrogen but not added inorganic nitrogen.
    Levičnik-Höfferle S; Nicol GW; Ausec L; Mandić-Mulec I; Prosser JI
    FEMS Microbiol Ecol; 2012 Apr; 80(1):114-23. PubMed ID: 22150211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cultivation of a highly enriched ammonia-oxidizing archaeon of thaumarchaeotal group I.1b from an agricultural soil.
    Kim JG; Jung MY; Park SJ; Rijpstra WI; Sinninghe Damsté JS; Madsen EL; Min D; Kim JS; Kim GJ; Rhee SK
    Environ Microbiol; 2012 Jun; 14(6):1528-43. PubMed ID: 22515152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current.
    Santoro AE; Casciotti KL; Francis CA
    Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms.
    Tourna M; Freitag TE; Nicol GW; Prosser JI
    Environ Microbiol; 2008 May; 10(5):1357-64. PubMed ID: 18325029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autotrophic growth of nitrifying community in an agricultural soil.
    Xia W; Zhang C; Zeng X; Feng Y; Weng J; Lin X; Zhu J; Xiong Z; Xu J; Cai Z; Jia Z
    ISME J; 2011 Jul; 5(7):1226-36. PubMed ID: 21326337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct responses in ammonia-oxidizing archaea and bacteria after addition of biosolids to an agricultural soil.
    Kelly JJ; Policht K; Grancharova T; Hundal LS
    Appl Environ Microbiol; 2011 Sep; 77(18):6551-8. PubMed ID: 21803892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enrichment and characterization of an autotrophic ammonia-oxidizing archaeon of mesophilic crenarchaeal group I.1a from an agricultural soil.
    Jung MY; Park SJ; Min D; Kim JS; Rijpstra WI; Sinninghe Damsté JS; Kim GJ; Madsen EL; Rhee SK
    Appl Environ Microbiol; 2011 Dec; 77(24):8635-47. PubMed ID: 22003023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.