These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 208556)

  • 1. Diminished inhibition of succinate-cytochrome c reductase activity of resolved reductase complex by thenoyltrifluoroacetone in the presence of antimycin.
    Trumpower BL; Simons Z
    Biochem Biophys Res Commun; 1978 May; 82(1):289-95. PubMed ID: 208556
    [No Abstract]   [Full Text] [Related]  

  • 2. Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin.
    Trumpower BL; Simmons Z
    J Biol Chem; 1979 Jun; 254(11):4608-16. PubMed ID: 220256
    [No Abstract]   [Full Text] [Related]  

  • 3. [Interaction of mitochondrial succinate:ubiquinone reductase with thenoyltrifluoroacetone and carboxin].
    Grivennikova VG; Vinogradov AD
    Biokhimiia; 1985 Mar; 50(3):375-83. PubMed ID: 3995101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dicyclohexylcarbodiimide inhibition of succinate- and ubiquinol-cytochrome c reductase in beef heart mitochondria.
    Degli Esposti M; Parenti-Castelli G; Lenaz G
    Ital J Biochem; 1981; 30(6):453-63. PubMed ID: 6277826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-site property of thenoyltrifluoroacetone inhibiting succinate-ubiquinone reductase.
    Xu JX; King TE
    Sci China B; 1992 Feb; 35(2):162-8. PubMed ID: 1581000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibitory effect of alpha-tocopherol and its derivatives on bovine heart succinate-cytochrome c reductase.
    Yu L; Yu CA
    Biochim Biophys Acta; 1983 May; 723(2):139-49. PubMed ID: 6303403
    [No Abstract]   [Full Text] [Related]  

  • 7. Characteristics of a succinate-di chlorophenolinophenol reductase reconstituted with bovine heart electron transport components.
    Cunningham CC; Spach PI
    Biochem Biophys Res Commun; 1975 Sep; 66(2):778-84. PubMed ID: 170931
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential effects of antimycin on ubisemiquinone bound in different environments in isolated succinate . cytochrome c reductase complex.
    Ohnishi T; Trumpower BL
    J Biol Chem; 1980 Apr; 255(8):3278-84. PubMed ID: 6245075
    [No Abstract]   [Full Text] [Related]  

  • 9. Strongyloides ratti: mitochondrial enzyme activities of the classical electron transport pathway in the infective (L3) larvae.
    Armson A; Grubb WB; Mendis AH
    Int J Parasitol; 1995 Feb; 25(2):257-60. PubMed ID: 7622333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex II.
    Ramsay RR; Ackrell BA; Coles CJ; Singer TP; White GA; Thorn GD
    Proc Natl Acad Sci U S A; 1981 Feb; 78(2):825-8. PubMed ID: 6940149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Electron transport particles from bovine heart as a test system in toxicological studies].
    Ludwig P; Schewe T; Ziem K; Rapoport S
    Acta Biol Med Ger; 1980; 39(4):503-7. PubMed ID: 6255713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Components of coupling site II accessible to p-diazobenzenesulfonate from the outside of mitochondria.
    Grigolava IV; Konstantinov A
    FEBS Lett; 1977; 78(1):36-40. PubMed ID: 194791
    [No Abstract]   [Full Text] [Related]  

  • 13. The effects of nitric oxide on electron transport complexes.
    Welter R; Yu L; Yu CA
    Arch Biochem Biophys; 1996 Jul; 331(1):9-14. PubMed ID: 8660677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the stabilized ubisemiquinone species in the succinate-cytochrome c reductase segment of the intact mitochondrial membrane system.
    Salerno JC; Ohnishi T
    Biochem J; 1980 Dec; 192(3):769-81. PubMed ID: 6263261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria.
    Zhang L; Yu L; Yu CA
    J Biol Chem; 1998 Dec; 273(51):33972-6. PubMed ID: 9852050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction between mitochondrial NADH-ubiquinone oxidoreductase and ubiquinol-cytochrome c oxidoreductase. Evidence for stoicheiometric association.
    Ragan CI; Heron C
    Biochem J; 1978 Sep; 174(3):783-90. PubMed ID: 215122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implication of mitochondria-derived reactive oxygen species, cytochrome C and caspase-3 in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells.
    Suzuki S; Higuchi M; Proske RJ; Oridate N; Hong WK; Lotan R
    Oncogene; 1999 Nov; 18(46):6380-7. PubMed ID: 10597238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Studies on the succinate dehydrogenating system. Isolation and properties of the mitochondrial succinate-ubiquinone reductase.
    Tushurashvili PR; Gavrikova EV; Ledenev AN; Vinogradov AD
    Biochim Biophys Acta; 1985 Sep; 809(2):145-59. PubMed ID: 2994719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complete inhibition of dihydro-orotate oxidation and superoxide production by 1,1,1-trifluoro-3-thenoylacetone in rat liver mitochondria.
    Dileepan KN; Kennedy J
    Biochem J; 1985 Jan; 225(1):189-94. PubMed ID: 2983662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.