These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 20856381)

  • 1. Infrared optical absorption loss of antireflection coatings on germanium and potassium chloride substrates at the 10-µm wavelength by the photothermal deflection technique.
    Liu X; Atanassov G; Gu PF; Sao Q; Tang JF
    Appl Opt; 1993 Oct; 32(28):5645-8. PubMed ID: 20856381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband AR coatings on germanium substrates using ion-assisted deposition.
    Oh TI
    Appl Opt; 1988 Oct; 27(20):4255-9. PubMed ID: 20539553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurements of absorption losses in TiO(2) films by a collinear photothermal deflection technique.
    Commandré M; Pelletier E
    Appl Opt; 1990 Oct; 29(28):4276-83. PubMed ID: 20577377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the chemical bonding on the optical and mechanical properties for germanium carbide films used as antireflection and protection coating of ZnS windows.
    Hu C; Zheng W; Tian H; Xu L; Jiang Q
    J Phys Condens Matter; 2006 May; 18(17):4231-41. PubMed ID: 21690777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absorption and thermal conductivity of oxide thin films measured by photothermal displacement and reflectance methods.
    Wu ZL; Reichling M; Hu XQ; Balasubramanian K; Guenther KH
    Appl Opt; 1993 Oct; 32(28):5660-5. PubMed ID: 20856383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the absorption uniformity of optical thin films based on the photothermal detuning technique.
    Hao H; Zhou A; Rao M
    Appl Opt; 2012 Oct; 51(28):6844-7. PubMed ID: 23033101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antireflection coating formed by plasma-enhanced chemical-vapor deposition for terahertz-frequency germanium optics.
    Hosako I
    Appl Opt; 2003 Jul; 42(19):4045-8. PubMed ID: 12868846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of antireflection coatings for optical waveguides.
    Yamada M; Ohmori Y; Takada K; Kobayashi M
    Appl Opt; 1991 Feb; 30(6):682-8. PubMed ID: 20582043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical properties of nanostructured TiO2 thin films and their application as antireflection coatings on infrared detectors.
    Jayasinghe RC; Perera AG; Zhu H; Zhao Y
    Opt Lett; 2012 Oct; 37(20):4302-4. PubMed ID: 23073444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Absorption, structural, and electrical properties of Ge films prepared by ion-beam-assisted deposition.
    Leng J; Zhao L; Ji Y; Liu H; Zhuang K
    Appl Opt; 2014 Feb; 53(4):A48-51. PubMed ID: 24514248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-layer low-absorption antireflection coating for KCl.
    McLachlan AD
    Appl Opt; 1978 Feb; 17(3):447-50. PubMed ID: 20174428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflectance, transmittance, and loss spectra of multilayer Si/SiO(2) thin film mirrors and antireflection coatings for 1.5 microm.
    Stone J; Stulz LW
    Appl Opt; 1990 Feb; 29(4):583-8. PubMed ID: 20556150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring the infrared absorption in thin film coatings.
    Harrington JA; Braunstein M; Rudisill JE
    Appl Opt; 1977 Nov; 16(11):2843-6. PubMed ID: 20174253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of thermal conductivity of thin layers used as transparent contacts and antireflection coatings with a photothermal method.
    Kaźmierczak-Bałata A; Bodzenta J; Korte-Kobylińska D; Mazur J; Gołaszewska K; Kamińska E; Piotrowska A
    Appl Opt; 2009 Mar; 48(7):C74-80. PubMed ID: 19252619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactively evaporated films of scandia and yttria.
    Heitmann W
    Appl Opt; 1973 Feb; 12(2):394-7. PubMed ID: 20125296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanically stable antireflection and antifogging coatings fabricated by the layer-by-layer deposition process and postcalcination.
    Zhang L; Li Y; Sun J; Shen J
    Langmuir; 2008 Oct; 24(19):10851-7. PubMed ID: 18767828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antireflection coatings designed for two different infrared substrates.
    Dobrowolski JA; Panchhi P; High M
    Appl Opt; 1996 Jan; 35(1):102-5. PubMed ID: 21068984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antireflection coatings for both visible and far-infrared spectral regions.
    Li L; Dobrowolski JA; Sankey JD; Wimperis JR
    Appl Opt; 1992 Oct; 31(28):6150-6. PubMed ID: 20733822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative photothermal study of reactive low-voltage ion-plated andelectron-beam-evaporated TiO(2) thin films.
    Wu ZL; Bange K
    Appl Opt; 1994 Dec; 33(34):7901-7. PubMed ID: 20963004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoporous antireflection coating for high-temperature applications in the infrared.
    Martir LIA; Currano LJ; Zgrabik CM; Zhang D; Weiblen R; Montalbano T; Talisa NB; Purcell MJ; Mooers CT; Thomas ME; Young DW; Khurgin J
    Appl Opt; 2023 Dec; 62(36):9553-9558. PubMed ID: 38108780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.