These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 20856485)

  • 1. Application of three-dimensional micro-optical components formed by lithography, electroforming, and plastic molding.
    Brenner KH; Kufner M; Kufner S; Moisel J; Müller A; Sinzinger S; Testorf M; Göttert J; Mohr J
    Appl Opt; 1993 Nov; 32(32):6464-9. PubMed ID: 20856485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brightness field distributions of microlens arrays using micro molding.
    Cheng HC; Huang CF; Lin Y; Shen YK
    Opt Express; 2010 Dec; 18(26):26887-904. PubMed ID: 21196966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly precise micro-retroreflector array fabricated by the LIGA process and its application as tapped delay line filter.
    Bohling M; Seiler T; Wdowiak B; Jahns J; Mohr J; Börner M
    Appl Opt; 2012 Sep; 51(25):5989-95. PubMed ID: 22945143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchrotron Radiation Lithography for Manufacturing Integrated Circuits Beyond 100 nm.
    Kinoshita H; Watanabe T; Niibe M
    J Synchrotron Radiat; 1998 May; 5(Pt 3):320-5. PubMed ID: 15263499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a 3D artificial compound eye.
    Li L; Yi AY
    Opt Express; 2010 Aug; 18(17):18125-37. PubMed ID: 20721201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low excess losses in a Y-branching plastic optical waveguide formed through injection molding.
    Takezawa Y; Akasaka S; Ohara S; Ishibashi T; Asano H; Taketani N
    Appl Opt; 1994 Apr; 33(12):2307-12. PubMed ID: 20885579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SU8 3D prisms with ultra small inclined angle for low-insertion-loss fiber/waveguide interconnection.
    Nguyen MH; Chang CJ; Lee MC; Tseng FG
    Opt Express; 2011 Sep; 19(20):18956-64. PubMed ID: 21996837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geodesic lenses for guided optical waves.
    Righini GC; Russo V; Sottini S; di Francia GT
    Appl Opt; 1973 Jul; 12(7):1477-81. PubMed ID: 20125551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the adhesion strength of micro electroforming layer by ultrasonic agitation method and the application.
    Zhao Z; Du L; Tao Y; Li Q; Luo L
    Ultrason Sonochem; 2016 Nov; 33():10-17. PubMed ID: 27245951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low loss high mesa optical waveguides based on InGaAsP/InP heterostructures.
    Choi WS; Jang JH; Yu BA; Lee YL; Zhao W; Bae JW; Adesida I
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3562-6. PubMed ID: 17252812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalent-optical-waveguide model for the analysis of optical waveguides by means of an asymptotic effective-index method.
    Rodríguez J; Fernández S; Palacios SL; Crespo RD; Fernández JM; Guinea A; Virgós JM; Olivares J
    Appl Opt; 1995 Sep; 34(27):6172-9. PubMed ID: 21060460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ultrasonic agitation on adhesion strength of micro electroforming Ni layer on Cu substrate.
    Zhao Z; Du L; Xu Z; Shao L
    Ultrason Sonochem; 2016 Mar; 29():1-10. PubMed ID: 26584978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an alternating magnetic-field-assisted finishing process for microelectromechanical systems micropore x-ray optics.
    Riveros RE; Yamaguchi H; Mitsuishi I; Takagi U; Ezoe Y; Kato F; Sugiyama S; Yamasaki N; Mitsuda K
    Appl Opt; 2010 Jun; 49(18):3511-21. PubMed ID: 20563204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures.
    Burrow GM; Leibovici MC; Gaylord TK
    Appl Opt; 2012 Jun; 51(18):4028-41. PubMed ID: 22722277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffraction-limited blazed reflection diffractive microlenses for oblique incidence fabricated by electron-beam lithography.
    Shiono T; Ogawa H
    Appl Opt; 1991 Sep; 30(25):3643-9. PubMed ID: 20706439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organic photonics: prospective nano/micro scale passive organic optical waveguides obtained from π-conjugated ligand molecules.
    Chandrasekar R
    Phys Chem Chem Phys; 2014 Apr; 16(16):7173-83. PubMed ID: 24623268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Fabrication of Highly Perforated Hollow Metallic Cylinder with Changeable Micro-Orifices by Electroforming-Extrusion Molding Hybrid Process.
    Zhang J; Ming P; Zhang X; Qin G; Yan L; Zhao X; Zheng X
    Micromachines (Basel); 2020 Jan; 11(1):. PubMed ID: 31936450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractive micro-optical elements for surface plasmons: from classical to gradient index optics.
    Devaux E; Laluet JY; Stein B; Genet C; Ebbesen T; Weeber JC; Dereux A
    Opt Express; 2010 Sep; 18(20):20610-9. PubMed ID: 20940955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional ultrahigh-density X-ray optical memory.
    Bezirganyan HP; Bezirganyan SE; Bezirganyan HH; Bezirganyan PH
    J Nanosci Nanotechnol; 2007 Jan; 7(1):306-15. PubMed ID: 17455496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-relief phase structures generated by light-initiated polymerization.
    Rohrbach A; Brenner KH
    Appl Opt; 1995 Aug; 34(22):4747-54. PubMed ID: 21052312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.