These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 20856571)

  • 1. Large-area, high-resolution pattern replication by the use of a two-aspherical-mirror system.
    Kinoshita H; Kurihara K; Mizota T; Haga T; Takenaka H; Torii Y
    Appl Opt; 1993 Dec; 32(34):7079-83. PubMed ID: 20856571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power loading limitations in soft x-ray projection lithography.
    Hawryluk AM; Ceglio NM
    J Xray Sci Technol; 1994 Jan; 4(3):167-81. PubMed ID: 21307490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical analysis of an ultra-high resolution two-mirror soft x-ray microscope.
    Shealy DL; Wang C; Hoover RB
    J Xray Sci Technol; 1995 Jan; 5(1):1-19. PubMed ID: 21307473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer mirror technology for soft-x-ray projection lithography.
    Stearns DG; Rosen RS; Vernon SP
    Appl Opt; 1993 Dec; 32(34):6952-60. PubMed ID: 20856551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchrotron Radiation Lithography for Manufacturing Integrated Circuits Beyond 100 nm.
    Kinoshita H; Watanabe T; Niibe M
    J Synchrotron Radiat; 1998 May; 5(Pt 3):320-5. PubMed ID: 15263499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-energy x-ray microbeam with total-reflection mirror optics.
    Suzuki Y; Takeuchi A; Terada Y
    Rev Sci Instrum; 2007 May; 78(5):053713. PubMed ID: 17552831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Illumination system design for a three-aspherical-mirror projection camera for extreme-ultraviolet lithography.
    Li Y; Kinoshita H; Watanabe T; Irie S; Shirayone S; Okazaki S
    Appl Opt; 2000 Jul; 39(19):3253-60. PubMed ID: 18349890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hard-X-ray imaging optics based on four aspherical mirrors with 50 nm resolution.
    Matsuyama S; Kidani N; Mimura H; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K
    Opt Express; 2012 Apr; 20(9):10310-9. PubMed ID: 22535120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stitching interferometry for ellipsoidal x-ray mirrors.
    Yumoto H; Koyama T; Matsuyama S; Yamauchi K; Ohashi H
    Rev Sci Instrum; 2016 May; 87(5):051905. PubMed ID: 27250377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional surface figure measurement of high-accuracy spherical mirror with nanoprofiler using normal vector tracing method.
    Kudo R; Okuda K; Usuki K; Nakano M; Yamamura K; Endo K
    Rev Sci Instrum; 2014 Apr; 85(4):045101. PubMed ID: 24784653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable two-mirror interference lithography system for wafer-scale nanopatterning.
    Mao W; Wathuthanthri I; Choi CH
    Opt Lett; 2011 Aug; 36(16):3176-8. PubMed ID: 21847199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry.
    Siewert F; Buchheim J; Boutet S; Williams GJ; Montanez PA; Krzywinski J; Signorato R
    Opt Express; 2012 Feb; 20(4):4525-36. PubMed ID: 22418212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interferometric testing for off-axis aspherical mirrors with computer-generated holograms.
    Kino M; Kurita M
    Appl Opt; 2012 Jul; 51(19):4291-7. PubMed ID: 22772100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of concave-convex imaging mirror system for development of a compact and achromatic full-field x-ray microscope.
    Yamada J; Matsuyama S; Sano Y; Yamauchi K
    Appl Opt; 2017 Feb; 56(4):967-974. PubMed ID: 28158101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wavelength considerations in soft-x-ray projection lithography.
    Hawryluk AM; Ceglio NM
    Appl Opt; 1993 Dec; 32(34):7062-7. PubMed ID: 20856568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical design of freeform two-mirror beam-shaping systems.
    Oliker V
    J Opt Soc Am A Opt Image Sci Vis; 2007 Dec; 24(12):3741-52. PubMed ID: 18059927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stitching techniques for measuring X-ray synchrotron mirror topography.
    Vivo A; Barrett R; Perrin F
    Rev Sci Instrum; 2019 Feb; 90(2):021710. PubMed ID: 30831702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of beamline optics for EUVL.
    Watanabe T; Haga T; Niibe M; Kinoshita H
    J Synchrotron Radiat; 1998 May; 5(Pt 3):1149-52. PubMed ID: 15263775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex situ metrology and data analysis for optimization of beamline performance of aspherical pre-shaped x-ray mirrors at the advanced light source.
    Yashchuk VV; Lacey I; Gevorkyan GS; McKinney WR; Smith BV; Warwick T
    Rev Sci Instrum; 2019 Feb; 90(2):021711. PubMed ID: 30831770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image quality improvement in a hard X-ray projection microscope using total reflection mirror optics.
    Mimura H; Yamauchi K; Yamamura K; Kubota A; Matsuyama S; Sano Y; Ueno K; Endo K; Nishino Y; Tamasaku K; Yabashi M; Ishikawa T; Mori Y
    J Synchrotron Radiat; 2004 Jul; 11(Pt 4):343-6. PubMed ID: 15211041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.