BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 20856967)

  • 1. Functionalization vs. fragmentation: n-aldehyde oxidation mechanisms and secondary organic aerosol formation.
    Chacon-Madrid HJ; Presto AA; Donahue NM
    Phys Chem Chem Phys; 2010 Nov; 12(42):13975-82. PubMed ID: 20856967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors.
    Lambe AT; Onasch TB; Croasdale DR; Wright JP; Martin AT; Franklin JP; Massoli P; Kroll JH; Canagaratna MR; Brune WH; Worsnop DR; Davidovits P
    Environ Sci Technol; 2012 May; 46(10):5430-7. PubMed ID: 22534114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atmospheric chemistry of n-butanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NO(x).
    Hurley MD; Wallington TJ; Laursen L; Javadi MS; Nielsen OJ; Yamanaka T; Kawasaki M
    J Phys Chem A; 2009 Jun; 113(25):7011-20. PubMed ID: 19462959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Secondary organic aerosol formation from high-NO(x) photo-oxidation of low volatility precursors: n-alkanes.
    Presto AA; Miracolo MA; Donahue NM; Robinson AL
    Environ Sci Technol; 2010 Mar; 44(6):2029-34. PubMed ID: 20166655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx.
    Lim YB; Ziemann PJ
    Environ Sci Technol; 2009 Apr; 43(7):2328-34. PubMed ID: 19452882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals.
    Lambe AT; Miracolo MA; Hennigan CJ; Robinson AL; Donahue NM
    Environ Sci Technol; 2009 Dec; 43(23):8794-800. PubMed ID: 19943648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes.
    Tkacik DS; Presto AA; Donahue NM; Robinson AL
    Environ Sci Technol; 2012 Aug; 46(16):8773-81. PubMed ID: 22823284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol.
    Kroll JH; Smith JD; Che DL; Kessler SH; Worsnop DR; Wilson KR
    Phys Chem Chem Phys; 2009 Sep; 11(36):8005-14. PubMed ID: 19727507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic nitrate formation in the radical-initiated oxidation of model aerosol particles in the presence of NOx.
    Renbaum LH; Smith GD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8040-7. PubMed ID: 19727511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics, products, and mechanisms of secondary organic aerosol formation.
    Ziemann PJ; Atkinson R
    Chem Soc Rev; 2012 Oct; 41(19):6582-605. PubMed ID: 22940672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene.
    Surratt JD; Murphy SM; Kroll JH; Ng NL; Hildebrandt L; Sorooshian A; Szmigielski R; Vermeylen R; Maenhaut W; Claeys M; Flagan RC; Seinfeld JH
    J Phys Chem A; 2006 Aug; 110(31):9665-90. PubMed ID: 16884200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques.
    Lee AK; Zhao R; Gao SS; Abbatt JP
    J Phys Chem A; 2011 Sep; 115(38):10517-26. PubMed ID: 21854005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yields of beta-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NO(x).
    Matsunaga A; Ziemann PJ
    J Phys Chem A; 2009 Jan; 113(3):599-606. PubMed ID: 19105730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene.
    Walser ML; Desyaterik Y; Laskin J; Laskin A; Nizkorodov SA
    Phys Chem Chem Phys; 2008 Feb; 10(7):1009-22. PubMed ID: 18259641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.
    Makogon O; Flyunt R; Tobien T; Naumov S; Bonifacić M
    J Phys Chem A; 2008 Jul; 112(26):5908-16. PubMed ID: 18540662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX.
    Hurley MD; Wallington TJ; Bjarrum M; Javadi MS; Nielsen OJ
    J Phys Chem A; 2008 Sep; 112(35):8053-60. PubMed ID: 18693707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation.
    Librando V; Tringali G
    J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atmospheric chemistry of 4:2 fluorotelomer iodide (n-C4F9CH2CH2I): kinetics and products of photolysis and reaction with OH radicals and Cl atoms.
    Young CJ; Hurley MD; Wallington TJ; Mabury SA
    J Phys Chem A; 2008 Dec; 112(51):13542-8. PubMed ID: 19053571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of eicosanoid metabolism in human airway epithelial cells by ozonolysis products of membrane fatty acids.
    Leikauf GD; Zhao Q; Zhou S; Santrock J
    Res Rep Health Eff Inst; 1995 Sep; (71):1-15; discussion 19-26. PubMed ID: 11379054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.