These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transitions from functionalization to fragmentation reactions of laboratory secondary organic aerosol (SOA) generated from the OH oxidation of alkane precursors. Lambe AT; Onasch TB; Croasdale DR; Wright JP; Martin AT; Franklin JP; Massoli P; Kroll JH; Canagaratna MR; Brune WH; Worsnop DR; Davidovits P Environ Sci Technol; 2012 May; 46(10):5430-7. PubMed ID: 22534114 [TBL] [Abstract][Full Text] [Related]
3. Atmospheric chemistry of n-butanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NO(x). Hurley MD; Wallington TJ; Laursen L; Javadi MS; Nielsen OJ; Yamanaka T; Kawasaki M J Phys Chem A; 2009 Jun; 113(25):7011-20. PubMed ID: 19462959 [TBL] [Abstract][Full Text] [Related]
4. Enthalpies of formation, bond dissociation energies, and molecular structures of the n-aldehydes (acetaldehyde, propanal, butanal, pentanal, hexanal, and heptanal) and their radicals. da Silva G; Bozzelli JW J Phys Chem A; 2006 Dec; 110(48):13058-67. PubMed ID: 17134166 [TBL] [Abstract][Full Text] [Related]
5. Secondary organic aerosol formation from high-NO(x) photo-oxidation of low volatility precursors: n-alkanes. Presto AA; Miracolo MA; Donahue NM; Robinson AL Environ Sci Technol; 2010 Mar; 44(6):2029-34. PubMed ID: 20166655 [TBL] [Abstract][Full Text] [Related]
6. Effects of molecular structure on aerosol yields from OH radical-initiated reactions of linear, branched, and cyclic alkanes in the presence of NOx. Lim YB; Ziemann PJ Environ Sci Technol; 2009 Apr; 43(7):2328-34. PubMed ID: 19452882 [TBL] [Abstract][Full Text] [Related]
7. Effective rate constants and uptake coefficients for the reactions of organic molecular markers (n-alkanes, hopanes, and steranes) in motor oil and diesel primary organic aerosols with hydroxyl radicals. Lambe AT; Miracolo MA; Hennigan CJ; Robinson AL; Donahue NM Environ Sci Technol; 2009 Dec; 43(23):8794-800. PubMed ID: 19943648 [TBL] [Abstract][Full Text] [Related]
8. Secondary organic aerosol formation from intermediate-volatility organic compounds: cyclic, linear, and branched alkanes. Tkacik DS; Presto AA; Donahue NM; Robinson AL Environ Sci Technol; 2012 Aug; 46(16):8773-81. PubMed ID: 22823284 [TBL] [Abstract][Full Text] [Related]
9. Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol. Kroll JH; Smith JD; Che DL; Kessler SH; Worsnop DR; Wilson KR Phys Chem Chem Phys; 2009 Sep; 11(36):8005-14. PubMed ID: 19727507 [TBL] [Abstract][Full Text] [Related]
10. Organic nitrate formation in the radical-initiated oxidation of model aerosol particles in the presence of NOx. Renbaum LH; Smith GD Phys Chem Chem Phys; 2009 Sep; 11(36):8040-7. PubMed ID: 19727511 [TBL] [Abstract][Full Text] [Related]
11. Kinetics, products, and mechanisms of secondary organic aerosol formation. Ziemann PJ; Atkinson R Chem Soc Rev; 2012 Oct; 41(19):6582-605. PubMed ID: 22940672 [TBL] [Abstract][Full Text] [Related]
12. Chemical composition of secondary organic aerosol formed from the photooxidation of isoprene. Surratt JD; Murphy SM; Kroll JH; Ng NL; Hildebrandt L; Sorooshian A; Szmigielski R; Vermeylen R; Maenhaut W; Claeys M; Flagan RC; Seinfeld JH J Phys Chem A; 2006 Aug; 110(31):9665-90. PubMed ID: 16884200 [TBL] [Abstract][Full Text] [Related]
13. Aqueous-phase OH oxidation of glyoxal: application of a novel analytical approach employing aerosol mass spectrometry and complementary off-line techniques. Lee AK; Zhao R; Gao SS; Abbatt JP J Phys Chem A; 2011 Sep; 115(38):10517-26. PubMed ID: 21854005 [TBL] [Abstract][Full Text] [Related]
14. Yields of beta-hydroxynitrates and dihydroxynitrates in aerosol formed from OH radical-initiated reactions of linear alkenes in the presence of NO(x). Matsunaga A; Ziemann PJ J Phys Chem A; 2009 Jan; 113(3):599-606. PubMed ID: 19105730 [TBL] [Abstract][Full Text] [Related]
15. High-resolution mass spectrometric analysis of secondary organic aerosol produced by ozonation of limonene. Walser ML; Desyaterik Y; Laskin J; Laskin A; Nizkorodov SA Phys Chem Chem Phys; 2008 Feb; 10(7):1009-22. PubMed ID: 18259641 [TBL] [Abstract][Full Text] [Related]
16. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane. Makogon O; Flyunt R; Tobien T; Naumov S; Bonifacić M J Phys Chem A; 2008 Jul; 112(26):5908-16. PubMed ID: 18540662 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric chemistry of 3-pentanol: kinetics, mechanisms, and products of Cl atom and OH radical initiated oxidation in the presence and absence of NOX. Hurley MD; Wallington TJ; Bjarrum M; Javadi MS; Nielsen OJ J Phys Chem A; 2008 Sep; 112(35):8053-60. PubMed ID: 18693707 [TBL] [Abstract][Full Text] [Related]
18. Atmospheric fate of OH initiated oxidation of terpenes. Reaction mechanism of alpha-pinene degradation and secondary organic aerosol formation. Librando V; Tringali G J Environ Manage; 2005 May; 75(3):275-82. PubMed ID: 15829369 [TBL] [Abstract][Full Text] [Related]
19. Atmospheric chemistry of 4:2 fluorotelomer iodide (n-C4F9CH2CH2I): kinetics and products of photolysis and reaction with OH radicals and Cl atoms. Young CJ; Hurley MD; Wallington TJ; Mabury SA J Phys Chem A; 2008 Dec; 112(51):13542-8. PubMed ID: 19053571 [TBL] [Abstract][Full Text] [Related]
20. Activation of eicosanoid metabolism in human airway epithelial cells by ozonolysis products of membrane fatty acids. Leikauf GD; Zhao Q; Zhou S; Santrock J Res Rep Health Eff Inst; 1995 Sep; (71):1-15; discussion 19-26. PubMed ID: 11379054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]