These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 20857151)
1. Studies on the assembly of a leucine zipper antibacterial peptide and its analogs onto mammalian cells and bacteria. Ahmad A; Azmi S; Ghosh JK Amino Acids; 2011 Feb; 40(2):749-59. PubMed ID: 20857151 [TBL] [Abstract][Full Text] [Related]
2. Effects of Pro --> peptoid residue substitution on cell selectivity and mechanism of antibacterial action of tritrpticin-amide antimicrobial peptide. Zhu WL; Lan H; Park Y; Yang ST; Kim JI; Park IS; You HJ; Lee JS; Park YS; Kim Y; Hahm KS; Shin SY Biochemistry; 2006 Oct; 45(43):13007-17. PubMed ID: 17059217 [TBL] [Abstract][Full Text] [Related]
3. Cell-selective lysis by novel analogues of melittin against human red blood cells and Escherichia coli. Pandey BK; Ahmad A; Asthana N; Azmi S; Srivastava RM; Srivastava S; Verma R; Vishwakarma AL; Ghosh JK Biochemistry; 2010 Sep; 49(36):7920-9. PubMed ID: 20695504 [TBL] [Abstract][Full Text] [Related]
4. De novo antimicrobial peptides with low mammalian cell toxicity. Javadpour MM; Juban MM; Lo WC; Bishop SM; Alberty JB; Cowell SM; Becker CL; McLaughlin ML J Med Chem; 1996 Aug; 39(16):3107-13. PubMed ID: 8759631 [TBL] [Abstract][Full Text] [Related]
5. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms. Ahmad A; Azmi S; Srivastava S; Kumar A; Tripathi JK; Mishra NN; Shukla PK; Ghosh JK Amino Acids; 2014 Nov; 46(11):2531-43. PubMed ID: 25069749 [TBL] [Abstract][Full Text] [Related]
6. Utilization of an amphipathic leucine zipper sequence to design antibacterial peptides with simultaneous modulation of toxic activity against human red blood cells. Ahmad A; Yadav SP; Asthana N; Mitra K; Srivastava SP; Ghosh JK J Biol Chem; 2006 Aug; 281(31):22029-22038. PubMed ID: 16717087 [TBL] [Abstract][Full Text] [Related]
7. Structure-function study of cathelicidin-derived bovine antimicrobial peptide BMAP-28: design of its cell-selective analogs by amino acid substitutions in the heptad repeat sequences. Ahmad A; Asthana N; Azmi S; Srivastava RM; Pandey BK; Yadav V; Ghosh JK Biochim Biophys Acta; 2009 Nov; 1788(11):2411-20. PubMed ID: 19735644 [TBL] [Abstract][Full Text] [Related]
8. Design of nontoxic analogues of cathelicidin-derived bovine antimicrobial peptide BMAP-27: the role of leucine as well as phenylalanine zipper sequences in determining its toxicity. Ahmad A; Azmi S; Srivastava RM; Srivastava S; Pandey BK; Saxena R; Bajpai VK; Ghosh JK Biochemistry; 2009 Nov; 48(46):10905-17. PubMed ID: 19845398 [TBL] [Abstract][Full Text] [Related]
9. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. Han FF; Gao YH; Luan C; Xie YG; Liu YF; Wang YZ J Dairy Sci; 2013 Jun; 96(6):3471-87. PubMed ID: 23567049 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanisms of antibacterial and antitumor actions of designed surfactant-like peptides. Chen C; Hu J; Zhang S; Zhou P; Zhao X; Xu H; Zhao X; Yaseen M; Lu JR Biomaterials; 2012 Jan; 33(2):592-603. PubMed ID: 21986402 [TBL] [Abstract][Full Text] [Related]
11. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of lytic activity of Escherichia coli toxin hemolysin E against human red blood cells by a leucine zipper peptide and understanding the underlying mechanism. Yadav SP; Ahmad A; Pandey BK; Verma R; Ghosh JK Biochemistry; 2008 Feb; 47(7):2134-42. PubMed ID: 18217774 [TBL] [Abstract][Full Text] [Related]
14. Dissection of antibacterial and toxic activity of melittin: a leucine zipper motif plays a crucial role in determining its hemolytic activity but not antibacterial activity. Asthana N; Yadav SP; Ghosh JK J Biol Chem; 2004 Dec; 279(53):55042-50. PubMed ID: 15475354 [TBL] [Abstract][Full Text] [Related]
15. The characteristic region of arenicin-1 involved with a bacterial membrane targeting mechanism. Cho J; Lee DG Biochem Biophys Res Commun; 2011 Feb; 405(3):422-7. PubMed ID: 21241661 [TBL] [Abstract][Full Text] [Related]
16. New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Cerovský V; Slaninová J; Fucík V; Hulacová H; Borovicková L; Jezek R; Bednárová L Peptides; 2008 Jun; 29(6):992-1003. PubMed ID: 18375018 [TBL] [Abstract][Full Text] [Related]
17. Inducing toxicity by introducing a leucine-zipper-like motif in frog antimicrobial peptide, magainin 2. Pandey BK; Srivastava S; Singh M; Ghosh JK Biochem J; 2011 Jun; 436(3):609-20. PubMed ID: 21434868 [TBL] [Abstract][Full Text] [Related]
18. Design of novel indolicidin-derived antimicrobial peptides with enhanced cell specificity and potent anti-inflammatory activity. Nan YH; Bang JK; Shin SY Peptides; 2009 May; 30(5):832-8. PubMed ID: 19428758 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial and cytolytic properties of the frog skin peptide, kassinatuerin-1 and its L- and D-lysine-substituted derivatives. Conlon JM; Abraham B; Galadari S; Knoop FC; Sonnevend A; Pál T Peptides; 2005 Nov; 26(11):2104-10. PubMed ID: 15885852 [TBL] [Abstract][Full Text] [Related]
20. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]