These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
71 related articles for article (PubMed ID: 20857151)
41. Membrane association, electrostatic sequestration, and cytotoxicity of Gly-Leu-rich peptide orthologs with differing functions. Vanhoye D; Bruston F; El Amri S; Ladram A; Amiche M; Nicolas P Biochemistry; 2004 Jul; 43(26):8391-409. PubMed ID: 15222751 [TBL] [Abstract][Full Text] [Related]
42. Naja naja atra and Naja nigricollis cardiotoxins induce fusion of Escherichia coli and Staphylococcus aureus membrane-mimicking liposomes. Kao PH; Lin SR; Hu WP; Chang LS Toxicon; 2012 Sep; 60(3):367-77. PubMed ID: 22569319 [TBL] [Abstract][Full Text] [Related]
43. Bactericidal and membrane disruption activities of the eosinophil cationic protein are largely retained in an N-terminal fragment. Torrent M; de la Torre BG; Nogués VM; Andreu D; Boix E Biochem J; 2009 Jul; 421(3):425-34. PubMed ID: 19450231 [TBL] [Abstract][Full Text] [Related]
44. Interactions of an anionic antimicrobial peptide with Staphylococcus aureus membranes. Dennison SR; Howe J; Morton LH; Brandenburg K; Harris F; Phoenix DA Biochem Biophys Res Commun; 2006 Sep; 347(4):1006-10. PubMed ID: 16857163 [TBL] [Abstract][Full Text] [Related]
45. Substitution of the leucine zipper sequence in melittin with peptoid residues affects self-association, cell selectivity, and mode of action. Zhu WL; Song YM; Park Y; Park KH; Yang ST; Kim JI; Park IS; Hahm KS; Shin SY Biochim Biophys Acta; 2007 Jun; 1768(6):1506-17. PubMed ID: 17462584 [TBL] [Abstract][Full Text] [Related]
46. Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Carreras E; Boix E; Rosenberg HF; Cuchillo CM; Nogués MV Biochemistry; 2003 Jun; 42(22):6636-44. PubMed ID: 12779318 [TBL] [Abstract][Full Text] [Related]
47. Fabrication of ellagic acid incorporated self-assembled peptide microtubes and their applications. Barnaby SN; Fath KR; Tsiola A; Banerjee IA Colloids Surf B Biointerfaces; 2012 Jun; 95():154-61. PubMed ID: 22455831 [TBL] [Abstract][Full Text] [Related]
48. Identification and characterization of an amphipathic leucine zipper-like motif in Escherichia coli toxin hemolysin E. Plausible role in the assembly and membrane destabilization. Yadav SP; Kundu B; Ghosh JK J Biol Chem; 2003 Dec; 278(51):51023-34. PubMed ID: 14525984 [TBL] [Abstract][Full Text] [Related]
49. Potent Antibacterial Activity of Synthetic Peptides Designed from Salusin-β and HIV-1 Tat(49-57). Kimura M; Kosuge K; Ko Y; Kurosaki N; Tagawa N; Kato I; Uchida Y Chem Pharm Bull (Tokyo); 2020 Aug; 68(8):810-813. PubMed ID: 32448814 [TBL] [Abstract][Full Text] [Related]
50. Addition of a small hydrophobic segment from the head region to an amphipathic leucine zipper like motif of E. coli toxin hemolysin E enhances the peptide-induced permeability of zwitterionic lipid vesicles. Yadav SP; Ahmad A; Ghosh JK Biochim Biophys Acta; 2007 Jun; 1768(6):1574-82. PubMed ID: 17467657 [TBL] [Abstract][Full Text] [Related]
51. Activity of a novel-designed antimicrobial peptide and its interaction with lipids. Yu L; Fan Q; Yue X; Mao Y; Qu L J Pept Sci; 2015 Apr; 21(4):274-82. PubMed ID: 25683050 [TBL] [Abstract][Full Text] [Related]
52. Inherent antibacterial activity of a peptide-based beta-hairpin hydrogel. Salick DA; Kretsinger JK; Pochan DJ; Schneider JP J Am Chem Soc; 2007 Nov; 129(47):14793-9. PubMed ID: 17985907 [TBL] [Abstract][Full Text] [Related]
53. Electroporation of the E. coli and S. Aureus membranes: molecular dynamics simulations of complex bacterial membranes. Piggot TJ; Holdbrook DA; Khalid S J Phys Chem B; 2011 Nov; 115(45):13381-8. PubMed ID: 21970408 [TBL] [Abstract][Full Text] [Related]
54. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Silvestro L; Weiser JN; Axelsen PH Antimicrob Agents Chemother; 2000 Mar; 44(3):602-7. PubMed ID: 10681325 [TBL] [Abstract][Full Text] [Related]
55. Intense blue fluorescence in a leucine zipper assembly. Tsutsumi H; Abe S; Mino T; Nomura W; Tamamura H Chembiochem; 2011 Mar; 12(5):691-4. PubMed ID: 21404410 [No Abstract] [Full Text] [Related]
56. Design of a potent antibiotic peptide based on the active region of human defensin 5. Wang C; Shen M; Gohain N; Tolbert WD; Chen F; Zhang N; Yang K; Wang A; Su Y; Cheng T; Zhao J; Pazgier M; Wang J J Med Chem; 2015 Apr; 58(7):3083-93. PubMed ID: 25782105 [TBL] [Abstract][Full Text] [Related]
57. Membrane-lytic actions of sulphonated methyl ester surfactants and implications to bactericidal effect and cytotoxicity. Pan F; Li Z; Gong H; Petkov JT; Lu JR J Colloid Interface Sci; 2018 Dec; 531():18-27. PubMed ID: 30015167 [TBL] [Abstract][Full Text] [Related]
58. A novel leucine zipper motif-based hybrid peptide delivers a functional peptide cargo inside cells. Hakata Y; Tsuchiya S; Michiue H; Ohtsuki T; Matsui H; Miyazawa M; Kitamatsu M Chem Commun (Camb); 2015; 51(2):413-6. PubMed ID: 25406914 [TBL] [Abstract][Full Text] [Related]
59. Enhanced gene expression by a novel designed leucine zipper endosomolytic peptide. Ahmad A; Rilla K; Zou J; Zhang W; Pyykkö I; Kinnunen P; Ranjan S Int J Pharm; 2021 May; 601():120556. PubMed ID: 33798688 [TBL] [Abstract][Full Text] [Related]
60. Introduction of a lysine residue promotes aggregation of temporin L in lipopolysaccharides and augmentation of its antiendotoxin property. Srivastava S; Ghosh JK Antimicrob Agents Chemother; 2013 Jun; 57(6):2457-66. PubMed ID: 23478966 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]