BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 20857153)

  • 1. Brainstorming: weighted voting prediction of inhibitors for protein targets.
    Plewczynski D
    J Mol Model; 2011 Sep; 17(9):2133-41. PubMed ID: 20857153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Machine Learning Comparisons of HIV Cell-based and Reverse Transcriptase Data Sets.
    Zorn KM; Lane TR; Russo DP; Clark AM; Makarov V; Ekins S
    Mol Pharm; 2019 Apr; 16(4):1620-1632. PubMed ID: 30779585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioactivity Comparison across Multiple Machine Learning Algorithms Using over 5000 Datasets for Drug Discovery.
    Lane TR; Foil DH; Minerali E; Urbina F; Zorn KM; Ekins S
    Mol Pharm; 2021 Jan; 18(1):403-415. PubMed ID: 33325717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large-scale comparison of machine learning algorithms for target prediction of natural products.
    Liang L; Liu Y; Kang B; Wang R; Sun MY; Wu Q; Meng XF; Lin JP
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36007240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Error Tolerance of Machine Learning Algorithms across Contemporary Biological Targets.
    Kaiser TM; Burger PB
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31167452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning on DNA-Encoded Libraries: A New Paradigm for Hit Finding.
    McCloskey K; Sigel EA; Kearnes S; Xue L; Tian X; Moccia D; Gikunju D; Bazzaz S; Chan B; Clark MA; Cuozzo JW; GuiƩ MA; Guilinger JP; Huguet C; Hupp CD; Keefe AD; Mulhern CJ; Zhang Y; Riley P
    J Med Chem; 2020 Aug; 63(16):8857-8866. PubMed ID: 32525674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors.
    Xia Z; Yan A
    Mol Divers; 2017 Aug; 21(3):661-675. PubMed ID: 28484935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual high throughput screening using combined random forest and flexible docking.
    Plewczynski D; von Grotthuss M; Rychlewski L; Ginalski K
    Comb Chem High Throughput Screen; 2009 Jun; 12(5):484-9. PubMed ID: 19519327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Binding Activity Prediction of Cyclin-Dependent Inhibitors.
    Saha I; Rak B; Bhowmick SS; Maulik U; Bhattacharjee D; Koch U; Lazniewski M; Plewczynski D
    J Chem Inf Model; 2015 Jul; 55(7):1469-82. PubMed ID: 26079845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSP_MCSVM: brainstorming consensus prediction of protein secondary structures using two-stage multiclass support vector machines.
    Chatterjee P; Basu S; Kundu M; Nasipuri M; Plewczynski D
    J Mol Model; 2011 Sep; 17(9):2191-201. PubMed ID: 21594694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery.
    Yang X; Wang Y; Byrne R; Schneider G; Yang S
    Chem Rev; 2019 Sep; 119(18):10520-10594. PubMed ID: 31294972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target specific compound identification using a support vector machine.
    Plewczynski D; von Grotthuss M; Spieser SA; Rychlewski L; Wyrwicz LS; Ginalski K; Koch U
    Comb Chem High Throughput Screen; 2007 Mar; 10(3):189-96. PubMed ID: 17346118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Weighted voting-based consensus clustering for chemical structure databases.
    Saeed F; Ahmed A; Shamsir MS; Salim N
    J Comput Aided Mol Des; 2014 Jun; 28(6):675-84. PubMed ID: 24830925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Methods in Computational Toxicology.
    Baskin II
    Methods Mol Biol; 2018; 1800():119-139. PubMed ID: 29934890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing different classification methods for virtual screening.
    Plewczynski D; Spieser SA; Koch U
    J Chem Inf Model; 2006; 46(3):1098-106. PubMed ID: 16711730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved machine learning models for predicting selective compounds.
    Ning X; Walters M; Karypis G
    J Chem Inf Model; 2012 Jan; 52(1):38-50. PubMed ID: 22107358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Machine Learning Approach for Predicting HIV Reverse Transcriptase Mutation Susceptibility of Biologically Active Compounds.
    Kaiser TM; Burger PB; Butch CJ; Pelly SC; Liotta DC
    J Chem Inf Model; 2018 Aug; 58(8):1544-1552. PubMed ID: 29953819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.