BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 2085719)

  • 1. Synaptosomal tryptophan uptake and efflux following lesion of central 5-hydroxytryptaminergic neurones.
    Wilkinson LS; Collard KJ
    Br J Pharmacol; 1990 Dec; 101(4):981-5. PubMed ID: 2085719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the mechanism by which tryptophan efflux from isolated synaptosomes is stimulated by depolarization.
    Collard KJ; Wilkinson LS; Lewis DJ
    Br J Pharmacol; 1988 Feb; 93(2):341-8. PubMed ID: 2965950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism by which extracellular sodium depletion causes 5-hydroxytryptamine release from rat brain synaptosomes.
    Collard KJ
    Biochim Biophys Acta; 1989 Sep; 984(3):319-25. PubMed ID: 2789079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of ECS-induced retrograde amnesia of passive avoidance conditioning after 5,7-dihydroxytryptamine median raphe nucleus lesion in the rat.
    Montanaro N; Dall'Olio R; Gandolfi O
    Neuropsychobiology; 1981; 7(2):57-66. PubMed ID: 6969865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of putative 5-hydroxytryptamine receptor active agents on D-amphetamine self-administration in controls and rats with 5,7-dihydroxytryptamine median forebrain bundle lesions.
    Leccese AP; Lyness WH
    Brain Res; 1984 Jun; 303(1):153-62. PubMed ID: 6610461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The stimulus-induced release of 5-hydroxytryptamine and tryptophan from superfused rat brain synaptosomes.
    Collard KJ; Evans TN; Suter HA; Wilkinson LS
    J Neural Transm; 1982; 53(2-3):223-30. PubMed ID: 6176682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coincidence of blockade of synaptosomal 5-hydroxytryptamine uptake and decrease in tryptophan hydroxylase activity: effects of fenfluramine.
    Knapp S; Mandell AJ
    J Pharmacol Exp Ther; 1976 Jul; 198(1):123-32. PubMed ID: 933002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels.
    Taglialatela M; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion of the median raphe nucleus: a combined behavioral and microdialysis study in rats.
    Thomas H; Fink H; Sohr TR; Voits M
    Pharmacol Biochem Behav; 2000 Jan; 65(1):15-21. PubMed ID: 10638630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of serotonergic neurons into the 5,7-DHT-lesioned rat olfactory bulb restores the parameters of kindling.
    Camu W; Marlier L; Lerner-Natoli M; Rondouin G; Privat A
    Brain Res; 1990 Jun; 518(1-2):23-30. PubMed ID: 2202489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of central 5-hydroxytryptamine depletion on performance in the "time-left" procedure: further evidence for a role of the 5-hydroxytryptaminergic pathways in behavioural "switching".
    al-Ruwaitea AS; al-Zahrani SS; Ho MY; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 1997 Nov; 134(2):179-86. PubMed ID: 9399382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of destruction of the 5-hydroxytryptaminergic pathways on behavioural timing and "switching" in a free-operant psychophysical procedure.
    al-Zahrani SS; Ho MY; Velazquez Martinez DN; Lopez Cabrera M; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 1996 Oct; 127(4):346-52. PubMed ID: 8923570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired acquisition of temporal differentiation performance following lesions of the ascending 5-hydroxytryptaminergic pathways.
    Wogar MA; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 1992; 107(2-3):373-8. PubMed ID: 1377396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for an involvement of 5-hydroxytryptaminergic neurones in the maintenance of operant behaviour by positive reinforcement.
    Wogar MA; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 1991; 105(1):119-24. PubMed ID: 1720896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite effects of extracellular sodium removal on the uptake of tryptophan into rat cortical slices and synaptosomes.
    Wilkinson LS; Collard KJ
    J Neurochem; 1984 Jul; 43(1):274-5. PubMed ID: 6726252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of serotonergic denervation on the density and plasticity of brain muscarinic receptors in the rat.
    Alonso R; Soubrie P
    Synapse; 1991 May; 8(1):30-7. PubMed ID: 1714634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative autoradiography of the serotonin transporter to assess the distribution of serotonergic projections from the dorsal raphe nucleus.
    Hensler JG; Ferry RC; Labow DM; Kovachich GB; Frazer A
    Synapse; 1994 May; 17(1):1-15. PubMed ID: 8042142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dorsal raphe-hypothalamic projections provide the stimulatory serotonergic input to suckling-induced prolactin release.
    Barofsky AL; Taylor J; Massari VJ
    Endocrinology; 1983 Nov; 113(5):1894-903. PubMed ID: 6685027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of regional 5-HT depletion on the cognitive enhancing effects of a typical 5-ht(6) receptor antagonist, Ro 04-6790, in the Novel Object Discrimination task.
    King MV; Spicer CH; Sleight AJ; Marsden CA; Fone KC
    Psychopharmacology (Berl); 2009 Jan; 202(1-3):111-23. PubMed ID: 18839151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan uptake and hydroxylation in rat forebrain synaptosomes.
    Knowles RG; Pogson CI
    J Neurochem; 1984 Mar; 42(3):677-84. PubMed ID: 6693897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.