BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20857901)

  • 41. Identification of metastasis-related proteins and their clinical relevance to triple-negative human breast cancer.
    Sun B; Zhang S; Zhang D; Li Y; Zhao X; Luo Y; Guo Y
    Clin Cancer Res; 2008 Nov; 14(21):7050-9. PubMed ID: 18981002
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Proteomics and breast cancer].
    Mathelin C; Tomasetto C; Cromer A; Rio MC
    Gynecol Obstet Fertil; 2006 Dec; 34(12):1161-9. PubMed ID: 17123853
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Development of an antibody proteomics system using a phage antibody library for efficient screening of biomarker proteins.
    Imai S; Nagano K; Yoshida Y; Okamura T; Yamashita T; Abe Y; Yoshikawa T; Yoshioka Y; Kamada H; Mukai Y; Nakagawa S; Tsutsumi Y; Tsunoda S
    Biomaterials; 2011 Jan; 32(1):162-9. PubMed ID: 20933274
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Stromal fibroblasts from the interface zone of human breast carcinomas induce an epithelial-mesenchymal transition-like state in breast cancer cells in vitro.
    Gao MQ; Kim BG; Kang S; Choi YP; Park H; Kang KS; Cho NH
    J Cell Sci; 2010 Oct; 123(Pt 20):3507-14. PubMed ID: 20841377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proteomic analysis of clear cell renal cell carcinoma. Identification of potential tumor markers.
    Sun CY; Zang YC; San YX; Sun W; Zhang L
    Saudi Med J; 2010 May; 31(5):525-32. PubMed ID: 20464042
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Clinical significance of serum proteomic patterns in diagnosis of breast cancer].
    Liu DH; Zhang LM; Feng WY
    Zhonghua Zhong Liu Za Zhi; 2006 Oct; 28(10):770-1. PubMed ID: 17366791
    [No Abstract]   [Full Text] [Related]  

  • 47. Multiple changes induced by fibroblasts on breast cancer cells.
    Cancemi P; Albanese NN; DiCara G; Marabeti MR; Costantini F; Minafra S; Pucci-Minafra I
    Connect Tissue Res; 2010 Apr; 51(2):88-104. PubMed ID: 20001846
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomics-based identification of alpha1-antitrypsin and haptoglobin precursors as novel serum markers in infiltrating ductal breast carcinomas.
    Hamrita B; Chahed K; Trimeche M; Guillier CL; Hammann P; Chaïeb A; Korbi S; Chouchane L
    Clin Chim Acta; 2009 Jun; 404(2):111-8. PubMed ID: 19306859
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Differential proteomic analysis of a highly metastatic variant of human breast cancer cells using two-dimensional differential gel electrophoresis.
    Xu SG; Yan PJ; Shao ZM
    J Cancer Res Clin Oncol; 2010 Oct; 136(10):1545-56. PubMed ID: 20155427
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Galectin-1 expression in cancer-associated stromal cells correlates tumor invasiveness and tumor progression in breast cancer.
    Jung EJ; Moon HG; Cho BI; Jeong CY; Joo YT; Lee YJ; Hong SC; Choi SK; Ha WS; Kim JW; Lee CW; Lee JS; Park ST
    Int J Cancer; 2007 Jun; 120(11):2331-8. PubMed ID: 17304502
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Proteomic evaluation of core biopsy specimens from breast lesions.
    Bisca A; D'Ambrosio C; Scaloni A; Puglisi F; Aprile G; Piga A; Zuiani C; Bazzocchi M; Di Loreto C; Paron I; Tell G; Damante G
    Cancer Lett; 2004 Feb; 204(1):79-86. PubMed ID: 14744537
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A mass spectrometry-based plasma protein panel targeting the tumor microenvironment in patients with breast cancer.
    Cohen A; Wang E; Chisholm KA; Kostyleva R; O'Connor-McCourt M; Pinto DM
    J Proteomics; 2013 Apr; 81():135-47. PubMed ID: 23174118
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of laser capture microscopy in proteomics research--a review.
    Kunz GM; Chan DW
    Dis Markers; 2004; 20(3):155-60. PubMed ID: 15502248
    [No Abstract]   [Full Text] [Related]  

  • 54. Quantitative proteomic analysis in breast cancer.
    Tabchy A; Hennessy BT; Gonzalez-Angulo AM; Bernstam FM; Lu Y; Mills GB
    Drugs Today (Barc); 2011 Feb; 47(2):169-82. PubMed ID: 21431104
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Progress in mass spectrometry-based proteomic research of tumor hypoxia (Review).
    Gao Z; Luo G; Ni B
    Oncol Rep; 2017 Aug; 38(2):676-684. PubMed ID: 28656308
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genomics, histopathology, and the tumor microenvironment: new relationship or old friends re-discovered?
    Visscher DW
    Breast Cancer Res Treat; 2011 Feb; 125(3):697-8. PubMed ID: 20473636
    [No Abstract]   [Full Text] [Related]  

  • 57. Exploring the interface zone in breast cancer: implications for surgical strategies and beyond.
    Mokbel K; Alamoodi M
    Breast Cancer Res; 2023 Nov; 25(1):135. PubMed ID: 37924119
    [No Abstract]   [Full Text] [Related]  

  • 58. Single-cell RNA reveals a tumorigenic microenvironment in the interface zone of human breast tumors.
    Yang W; Xu M; Xu S; Guan Q; Geng S; Wang J; Wei W; Xu H; Liu Y; Meng Y; Gao MQ
    Breast Cancer Res; 2023 Aug; 25(1):100. PubMed ID: 37644609
    [TBL] [Abstract][Full Text] [Related]  

  • 59. CapG promoted nasopharyngeal carcinoma cell motility involving Rho motility pathway independent of ROCK.
    Fu Y; Zhang X; Liang X; Chen Y; Chen Z; Xiao Z
    World J Surg Oncol; 2022 Oct; 20(1):347. PubMed ID: 36258216
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.