These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 20857978)
21. An in situ approach for facile fabrication of robust and scalable SERS substrates. Wang YC; DuChene JS; Huo F; Wei WD Nanoscale; 2014 Jul; 6(13):7232-6. PubMed ID: 24896881 [TBL] [Abstract][Full Text] [Related]
23. On the critical role of Rayleigh scattering in single-molecule surface-enhanced Raman scattering via a plasmonic nanogap. Chen BQ; Zhang C; Li J; Li ZY; Xia Y Nanoscale; 2016 Aug; 8(34):15730-6. PubMed ID: 27526632 [TBL] [Abstract][Full Text] [Related]
24. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
25. Time-dependent and symmetry-selective charge-transfer contribution to SERS in gold nanoparticle aggregates. Yoon JH; Park JS; Yoon S Langmuir; 2009 Nov; 25(21):12475-80. PubMed ID: 19817481 [TBL] [Abstract][Full Text] [Related]
26. Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy. Chang TW; Wang X; Mahigir A; Veronis G; Liu GL; Gartia MR ACS Sens; 2017 Aug; 2(8):1133-1138. PubMed ID: 28726383 [TBL] [Abstract][Full Text] [Related]
27. Direct Observation of Enhanced Raman Scattering on Nano-Sized ZrO Ji P; Wang Z; Shang X; Zhang Y; Liu Y; Mao Z; Shi X Front Chem; 2019; 7():245. PubMed ID: 31058134 [TBL] [Abstract][Full Text] [Related]
28. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Radziuk D; Moehwald H Phys Chem Chem Phys; 2015 Sep; 17(33):21072-93. PubMed ID: 25619814 [TBL] [Abstract][Full Text] [Related]
29. Intensity Fluctuations in Single-Molecule Surface-Enhanced Raman Scattering. Dos Santos DP; Temperini MLA; Brolo AG Acc Chem Res; 2019 Feb; 52(2):456-464. PubMed ID: 30668089 [TBL] [Abstract][Full Text] [Related]
30. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. Kim K; Lee HS J Phys Chem B; 2005 Oct; 109(40):18929-34. PubMed ID: 16853437 [TBL] [Abstract][Full Text] [Related]
31. Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing. Li X; Guo S; Su J; Ren X; Fang Z ACS Appl Mater Interfaces; 2020 Jun; 12(25):28474-28483. PubMed ID: 32468820 [TBL] [Abstract][Full Text] [Related]
32. Characterization of the surface enhanced raman scattering (SERS) of bacteria. Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017 [TBL] [Abstract][Full Text] [Related]
33. Enhancement of SERS background through charge transfer resonances on single crystal gold surfaces of various orientations. Ikeda K; Suzuki S; Uosaki K J Am Chem Soc; 2013 Nov; 135(46):17387-92. PubMed ID: 24160263 [TBL] [Abstract][Full Text] [Related]
35. Raman spectroelectrochemistry of molecules within individual electromagnetic hot spots. Shegai T; Vaskevich A; Rubinstein I; Haran G J Am Chem Soc; 2009 Oct; 131(40):14390-8. PubMed ID: 19807184 [TBL] [Abstract][Full Text] [Related]
36. A Density Functional Theoretical Study on the Charge-Transfer Enhancement in Surface-Enhanced Raman Scattering. Gao ST; Xiang SQ; Jiang Y; Zhao LB Chemphyschem; 2018 Dec; 19(24):3401-3409. PubMed ID: 30294973 [TBL] [Abstract][Full Text] [Related]
37. Strong Dependence of Surface Enhanced Raman Scattering on Structure of Graphene Oxide Film. Wang L; Zhang Y; Yang Y; Zhang J Materials (Basel); 2018 Jul; 11(7):. PubMed ID: 30002326 [TBL] [Abstract][Full Text] [Related]
38. Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings. Ye J; Hutchison JA; Uji-i H; Hofkens J; Lagae L; Maes G; Borghs G; Van Dorpe P Nanoscale; 2012 Mar; 4(5):1606-11. PubMed ID: 22297424 [TBL] [Abstract][Full Text] [Related]
39. Plasmonic nanosnowmen with a conductive junction as highly tunable nanoantenna structures and sensitive, quantitative and multiplexable surface-enhanced Raman scattering probes. Lee JH; You MH; Kim GH; Nam JM Nano Lett; 2014 Nov; 14(11):6217-25. PubMed ID: 25275930 [TBL] [Abstract][Full Text] [Related]
40. Bridged-bowtie and cross bridged-bowtie nanohole arrays as SERS substrates with hotspot tunability and multi-wavelength SERS response. Gupta N; Dhawan A Opt Express; 2018 Jul; 26(14):17899-17915. PubMed ID: 30114073 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]