These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 2085802)

  • 1. Reactive oxygen species alter contractile properties of pulmonary arterial smooth muscle.
    Rhoades RA; Packer CS; Roepke DA; Jin N; Meiss RA
    Can J Physiol Pharmacol; 1990 Dec; 68(12):1581-9. PubMed ID: 2085802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive oxygen-mediated contraction in pulmonary arterial smooth muscle: cellular mechanisms.
    Jin N; Packer CS; Rhoades RA
    Can J Physiol Pharmacol; 1991 Mar; 69(3):383-8. PubMed ID: 1676338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superoxide radical-mediated endothelial injury and vasoconstriction of rat thoracic aortic rings.
    Lawson DL; Mehta JL; Nichols WW; Mehta P; Donnelly WH
    J Lab Clin Med; 1990 May; 115(5):541-8. PubMed ID: 2160508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Susceptibility of caffeine- and Ins(1,4,5)P3-induced contractions to oxidants in permeabilized vascular smooth muscle.
    Wada S; Okabe E
    Eur J Pharmacol; 1997 Feb; 320(1):51-9. PubMed ID: 9049602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of reactive oxygen metabolites on norepinephrine-induced vasoconstriction.
    Gao H; Korthuis RJ; Benoit JN
    Free Radic Biol Med; 1994 Jun; 16(6):839-43. PubMed ID: 8070689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contractile responses elicited by hydrogen peroxide in aorta from normotensive and hypertensive rats. Endothelial modulation and mechanism involved.
    Rodríguez-Martínez MA; García-Cohen EC; Baena AB; González R; Salaíces M; Marín J
    Br J Pharmacol; 1998 Nov; 125(6):1329-35. PubMed ID: 9863664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of contractile activity of endothelin-1 induced by electrical field stimulation-generated free radicals.
    Yasuda N; Kasuya Y; Yamada G; Hama H; Masaki T; Goto K
    Br J Pharmacol; 1994 Sep; 113(1):21-8. PubMed ID: 7812613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biphasic contractile response of pulmonary artery to hypoxia.
    Bennie RE; Packer CS; Powell DR; Jin N; Rhoades RA
    Am J Physiol; 1991 Aug; 261(2 Pt 1):L156-63. PubMed ID: 1872410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of hydrogen peroxide-induced relaxation in rabbit mesenteric small artery.
    Fujimoto S; Asano T; Sakai M; Sakurai K; Takagi D; Yoshimoto N; Itoh T
    Eur J Pharmacol; 2001 Feb; 412(3):291-300. PubMed ID: 11166293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of structure, function, and metabolic changes due to an exogenous source of oxygen metabolites in rat heart.
    Gupta M; Singal PK
    Can J Physiol Pharmacol; 1989 Dec; 67(12):1549-59. PubMed ID: 2627693
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen-derived free radicals, endothelium, and responsiveness of vascular smooth muscle.
    Rubanyi GM; Vanhoutte PM
    Am J Physiol; 1986 May; 250(5 Pt 2):H815-21. PubMed ID: 3085520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide and free radicals in the contractile response to non-preactivated leukocytes.
    Kennedy S; Work L; Ferris P; Miller A; McManus B; Wadsworth RM; Wainwright CL
    Eur J Pharmacol; 1998 Mar; 345(3):269-77. PubMed ID: 9592026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of a xanthine oxidase/hypoxanthine free radical and reactive oxygen species generating system on endothelial function in New Zealand white rabbit aortic rings.
    Dowell FJ; Hamilton CA; McMurray J; Reid JL
    J Cardiovasc Pharmacol; 1993 Dec; 22(6):792-7. PubMed ID: 7509895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of hydrogen peroxide-induced contraction of rat aorta.
    Yang ZW; Zheng T; Zhang A; Altura BT; Altura BM
    Eur J Pharmacol; 1998 Mar; 344(2-3):169-81. PubMed ID: 9600652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of prolonged exposure to oxygen-derived free radicals in canine pulmonary arteries.
    Wiklund L; McGregor CG; Miller VM
    Am J Physiol; 1996 Jun; 270(6 Pt 2):H2184-90. PubMed ID: 8764272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The vein utilizes different sources of energy than the artery during pulmonary hypoxic vasoconstriction.
    Zhao Y; Packer CS; Rhoades RA
    Exp Lung Res; 1996; 22(1):51-63. PubMed ID: 8838135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of activated neutrophils and free radical in the pathogenesis of pulmonary hypertension.
    Sun R; Wang A; Yan Y; Zhang H
    Chin Med Sci J; 1993 Mar; 8(1):15-9. PubMed ID: 8274714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of platelet-mediated relaxation in rat aortic rings exposed to xanthine-xanthine oxidase.
    Yang BC; Khan S; Mehta JL
    Am J Physiol; 1994 Jun; 266(6 Pt 2):H2212-9. PubMed ID: 8023984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melatonin inhibits the contractile effect of vanadate in the isolated pulmonary arterial rings of rats: possible role of hydrogen peroxide.
    Nagi MN; Mansour MA; Al-Shabanah OA; El-Kashef HA
    J Biochem Mol Toxicol; 2002; 16(6):273-8. PubMed ID: 12481302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of phytoestrogens and 17beta-estradiol on vasoconstriction elicited by reactive oxygen species.
    Zhang P; Li HF; Tian ZF; Qiu XQ; Wu JX; Jia ZJ
    Pharmazie; 2007 May; 62(5):378-81. PubMed ID: 17557748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.