BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20858024)

  • 1. NF-κB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia.
    Breccia M; Alimena G
    Expert Opin Ther Targets; 2010 Nov; 14(11):1157-76. PubMed ID: 20858024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Therapeutic targeting of NF-κB in myelodysplastic syndromes and acute myeloid leukaemia - the biological heterogeneity.
    Bruserud Ø; Reikvam H
    Expert Opin Ther Targets; 2010 Nov; 14(11):1139-42. PubMed ID: 20942744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear factor-kappaB modulation as a therapeutic approach in hematologic malignancies.
    Panwalkar A; Verstovsek S; Giles F
    Cancer; 2004 Apr; 100(8):1578-89. PubMed ID: 15073843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting NF-kappaB in hematologic malignancies.
    Braun T; Carvalho G; Fabre C; Grosjean J; Fenaux P; Kroemer G
    Cell Death Differ; 2006 May; 13(5):748-58. PubMed ID: 16498458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia.
    Fabre C; Carvalho G; Tasdemir E; Braun T; Adès L; Grosjean J; Boehrer S; Métivier D; Souquère S; Pierron G; Fenaux P; Kroemer G
    Oncogene; 2007 Jun; 26(28):4071-83. PubMed ID: 17213804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NF-kappaB and IKK as therapeutic targets in cancer.
    Kim HJ; Hawke N; Baldwin AS
    Cell Death Differ; 2006 May; 13(5):738-47. PubMed ID: 16485028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The function of multiple IkappaB : NF-kappaB complexes in the resistance of cancer cells to Taxol-induced apoptosis.
    Dong QG; Sclabas GM; Fujioka S; Schmidt C; Peng B; Wu T; Tsao MS; Evans DB; Abbruzzese JL; McDonnell TJ; Chiao PJ
    Oncogene; 2002 Sep; 21(42):6510-9. PubMed ID: 12226754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation.
    Viatour P; Merville MP; Bours V; Chariot A
    Trends Biochem Sci; 2005 Jan; 30(1):43-52. PubMed ID: 15653325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation and function of IKK and IKK-related kinases.
    Häcker H; Karin M
    Sci STKE; 2006 Oct; 2006(357):re13. PubMed ID: 17047224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Proteasome inhibitor bortezomib as an anticancer drug].
    Yasui H; Hideshima T
    Tanpakushitsu Kakusan Koso; 2006 Aug; 51(10 Suppl):1251-6. PubMed ID: 16922383
    [No Abstract]   [Full Text] [Related]  

  • 11. NF-kappaB as a therapeutic target in chronic lymphocytic leukemia.
    Lopez-Guerra M; Colomer D
    Expert Opin Ther Targets; 2010 Mar; 14(3):275-88. PubMed ID: 20148715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can NF-kappaB be a target for novel and efficient anti-cancer agents?
    Olivier S; Robe P; Bours V
    Biochem Pharmacol; 2006 Oct; 72(9):1054-68. PubMed ID: 16973133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting of nuclear factor kappaB Pathways by dehydroxymethylepoxyquinomicin, a novel inhibitor of breast carcinomas: antitumor and antiangiogenic potential in vivo.
    Matsumoto G; Namekawa J; Muta M; Nakamura T; Bando H; Tohyama K; Toi M; Umezawa K
    Clin Cancer Res; 2005 Feb; 11(3):1287-93. PubMed ID: 15709200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear factor-kappaB as a potential therapeutic target for the novel cytotoxic agent LC-1 in acute myeloid leukaemia.
    Jenkins C; Hewamana S; Gilkes A; Neelakantan S; Crooks P; Mills K; Pepper C; Burnett A
    Br J Haematol; 2008 Dec; 143(5):661-71. PubMed ID: 19036014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteasome inhibition: a new approach for the treatment of malignancies.
    Spano JP; Bay JO; Blay JY; Rixe O
    Bull Cancer; 2005 Nov; 92(11):E61-6, 945-52. PubMed ID: 16316823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of NEMO, the regulatory subunit of the IKK complex, induces apoptosis in high-risk myelodysplastic syndrome and acute myeloid leukemia.
    Carvalho G; Fabre C; Braun T; Grosjean J; Ades L; Agou F; Tasdemir E; Boehrer S; Israel A; Véron M; Fenaux P; Kroemer G
    Oncogene; 2007 Apr; 26(16):2299-307. PubMed ID: 17043643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcription factor NF-κB inhibitors as single therapeutic agents or in combination with classical chemotherapeutic agents for the treatment of hematologic malignancies.
    Fuchs O
    Curr Mol Pharmacol; 2010 Nov; 3(3):98-122. PubMed ID: 20594187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of apoptosis in estrogen receptor-negative breast cancer cells by natural and synthetic cyclopentenones: role of the IkappaB kinase/nuclear factor-kappaB pathway.
    Ciucci A; Gianferretti P; Piva R; Guyot T; Snape TJ; Roberts SM; Santoro MG
    Mol Pharmacol; 2006 Nov; 70(5):1812-21. PubMed ID: 16908599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: Role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27KIP1, BRCA1, and NF-kappaB.
    Menendez JA; Mehmi I; Atlas E; Colomer R; Lupu R
    Int J Oncol; 2004 Mar; 24(3):591-608. PubMed ID: 14767544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naturally occurring and synthetic inhibitors of NF-kappaB functions.
    Umezawa K; Ariga A; Matsumoto N
    Anticancer Drug Des; 2000 Aug; 15(4):239-44. PubMed ID: 11200499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.