BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 2085811)

  • 1. 3-Deoxy-L-glycero-pentos-2-ulose (3-deoxy-L-xylosone) and L-threo-pentos-2-ulose (L-xylosone) as intermediates in the degradation of L-ascorbic acid.
    Shin DB; Feather MS
    Carbohydr Res; 1990 Dec; 208():246-50. PubMed ID: 2085811
    [No Abstract]   [Full Text] [Related]  

  • 2. The reaction of 3-deoxy-D-glycero-pentos-2-ulose ("3-deoxyxylosone") with aminoguanidine.
    Hirsch J; Baynes JW; Blackledge JA; Feather MS
    Carbohydr Res; 1991 Nov; 220():c5-7. PubMed ID: 1811851
    [No Abstract]   [Full Text] [Related]  

  • 3. Simultaneous formation of 3-deoxy-d-threo-hexo-2-ulose and 3-deoxy-d-erythro-hexo-2-ulose during the degradation of d-glucose derived Amadori rearrangement products: Mechanistic considerations.
    Kaufmann M; Krüger S; Mügge C; Kroh LW
    Carbohydr Res; 2018 Mar; 458-459():44-51. PubMed ID: 29454872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Convenient preparation of L-arabino-hexos-5-ulose derivatives from lactose.
    Catelani G; Corsaro A; D'Andrea F; Mariani M; Pistarà V; Vittorino E
    Carbohydr Res; 2003 Oct; 338(22):2349-58. PubMed ID: 14572719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of L-xylosone from ascorbic acid.
    WHITING GC; COGGINS RA
    Nature; 1960 Mar; 185():843-4. PubMed ID: 13844461
    [No Abstract]   [Full Text] [Related]  

  • 6. Phosphate-catalyzed degradation of D-glucosone in aqueous solution is accompanied by C1-C2 transposition.
    Zhang W; Serianni AS
    J Am Chem Soc; 2012 Jul; 134(28):11511-24. PubMed ID: 22650268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13C-substituted pentos-2-uloses: synthesis and analysis by 1H- and 13C-n.m.r. spectroscopy.
    Vuorinen T; Serianni AS
    Carbohydr Res; 1990 Oct; 207(2):185-210. PubMed ID: 2076516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. When Good Intentions Go Awry: Modification of a Recombinant Monoclonal Antibody in Chemically Defined Cell Culture by Xylosone, an Oxidative Product of Ascorbic Acid.
    Chumsae C; Hossler P; Raharimampionona H; Zhou Y; McDermott S; Racicot C; Radziejewski C; Zhou ZS
    Anal Chem; 2015 Aug; 87(15):7529-34. PubMed ID: 26151084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reaction of some dicarbonyl sugars with aminoguanidine.
    Hirsch J; Petrakova E; Feather MS
    Carbohydr Res; 1992 Jul; 232(1):125-30. PubMed ID: 1423344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of 1-deoxy-D-erythro-hexo-2,3-diulose, a major hexose Maillard intermediate.
    Glomb MA; Pfahler C
    Carbohydr Res; 2000 Nov; 329(3):515-23. PubMed ID: 11128581
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of thermally treated α-dicarbonyl compounds.
    Pfeifer YV; Haase PT; Kroh LW
    J Agric Food Chem; 2013 Mar; 61(12):3090-6. PubMed ID: 23432453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ZnCl2-mediated practical protocol for the synthesis of Amadori ketoses.
    Harohally NV; Srinivas SM; Umesh S
    Food Chem; 2014 Sep; 158():340-4. PubMed ID: 24731352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-Infrared Fluorescence Probe for Monitoring the Metabolic Products of Vitamin C in HepG2 Cells under Normoxia and Hypoxia.
    Pan X; Wang X; Wang L; Xu K; Kong F; Tang B
    Anal Chem; 2015 Jul; 87(14):7092-7. PubMed ID: 26086401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and detection of lysine-arginine cross-links derived from dehydroascorbic acid.
    Reihl O; Lederer MO; Schwack W
    Carbohydr Res; 2004 Feb; 339(3):483-91. PubMed ID: 15013385
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The extent of N epsilon-(carboxymethyl)lysine formation in lens proteins and polylysine by the autoxidation products of ascorbic acid.
    Slight SH; Prabhakaram M; Shin DB; Feather MS; Ortwerth BJ
    Biochim Biophys Acta; 1992 Sep; 1117(2):199-206. PubMed ID: 1525181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of 3,6-dideoxy-D-erythro-hexos-4-ulose and identification as the 3,6-dideoxy-4-ketohexose from Pasteurella pseudotuberculosis.
    Stevens CL; Schultze KW; Smith DJ; Pillai PM; Rubenstein P; Strominger JL
    J Am Chem Soc; 1973 Aug; 95(17):5767-8. PubMed ID: 4733819
    [No Abstract]   [Full Text] [Related]  

  • 17. Synthesis of furanose derivatives of 3-deoxy-D-erythro-2-hexulosonic acid and their 3-bromo and 3-deuterio analogs.
    Di Nardo C; Varela O
    Carbohydr Res; 2000 Oct; 328(4):605-10. PubMed ID: 11093717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of methyl 2-acetamido-2,6-dideoxy-alpha- and beta-d-xylo-hexopyranosid-4-ulose, a keto sugar which misled the analytical chemists.
    Borowski S; Michalik D; Reinke H; Vogel C; Hanuszkiewicz A; Duda KA; Holst O
    Carbohydr Res; 2008 May; 343(6):1004-11. PubMed ID: 18314095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant capacity of 1-deoxy-D-erythro-hexo-2,3-diulose and D-arabino-hexo-2-ulose.
    Kanzler C; Haase PT; Kroh LW
    J Agric Food Chem; 2014 Apr; 62(13):2837-44. PubMed ID: 24605798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double oxidation of D-xylose to D-glycero -pentos-2,3-diulose (2,3-diketo-D-xylose) by pyranose dehydrogenase from the mushroom Agaricus bisporus.
    Volc J; Sedmera P; Halada P; Prikrylová V; Haltrich D
    Carbohydr Res; 2000 Oct; 329(1):219-25. PubMed ID: 11086703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.