These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2085814)

  • 1. 3-Deoxy-D-erythro-hexulose: a convenient synthesis and its interaction with the enzymes of fructose metabolism.
    Dills WL
    Carbohydr Res; 1990 Dec; 208():276-9. PubMed ID: 2085814
    [No Abstract]   [Full Text] [Related]  

  • 2. Facile Enzymatic Synthesis of Ketoses.
    Wen L; Huang K; Wei M; Meisner J; Liu Y; Garner K; Zang L; Wang X; Li X; Fang J; Zhang H; Wang PG
    Angew Chem Int Ed Engl; 2015 Oct; 54(43):12654-8. PubMed ID: 26275233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on cataractogenesis in humans and in rats with alloxan-induced diabetes. II. Histochemical evaluation of lenticular enzymes.
    Ahmad SS; Tsou KC; Ahmad SI; Rahman MA
    Ophthalmic Res; 1985; 17(1):12-20. PubMed ID: 2984623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructose Metabolism in Cancer.
    Krause N; Wegner A
    Cells; 2020 Dec; 9(12):. PubMed ID: 33302403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5-Keto-D-fructose and its phosphate esters-1.
    Avigad G; Englard S
    Methods Enzymol; 1975; 41():84-90. PubMed ID: 124006
    [No Abstract]   [Full Text] [Related]  

  • 6. Deoxysugars via microbial reduction of 5-acyl-isoxazolines: application to the synthesis of 3-deoxy-D-fructose and derivatives.
    Gefflaut T; Martin C; Delor S; Besse P; Veschambre H; Bolte J
    J Org Chem; 2001 Apr; 66(7):2296-301. PubMed ID: 11281769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peripheral nerve protein glycation and muscle fructolysis: evidence of abnormal carbohydrate metabolism in ALS.
    Poulton KR; Rossi ML
    Funct Neurol; 1993; 8(1):33-42. PubMed ID: 8330752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The substrate and anomeric specificity of fructokinase.
    Raushel FM; Cleland WW
    J Biol Chem; 1973 Dec; 248(23):8174-7. PubMed ID: 4356621
    [No Abstract]   [Full Text] [Related]  

  • 9. Rapid affinity purification and properties of rat liver sorbitol dehydrogenase.
    Leissing N; McGuinness ET
    Biochim Biophys Acta; 1978 Jun; 524(2):254-61. PubMed ID: 667078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development.
    Granot D; Kelly G; Stein O; David-Schwartz R
    J Exp Bot; 2014 Mar; 65(3):809-19. PubMed ID: 24293612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on D-tetrose metabolism. V. Identification of protecting factor against cold inactivation of D-erythrulose reductase from beef liver.
    Uehara K; Tanimoto T; Sato H
    J Nutr Sci Vitaminol (Tokyo); 1974; 20(4):293-300. PubMed ID: 4154978
    [No Abstract]   [Full Text] [Related]  

  • 12. Methylglyoxal and the polyol pathway. Three-carbon compounds are substrates for sheep liver sorbitol dehydrogenase.
    Lindstad RI; McKinley-McKee JS
    FEBS Lett; 1993 Sep; 330(1):31-5. PubMed ID: 8370454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic mechanism of sheep liver sorbitol dehydrogenase.
    Lindstad RI; Hermansen LF; McKinley-McKee JS
    Eur J Biochem; 1992 Dec; 210(2):641-7. PubMed ID: 1459146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate specificity of sheep liver sorbitol dehydrogenase.
    Lindstad RI; Köll P; McKinley-McKee JS
    Biochem J; 1998 Feb; 330 ( Pt 1)(Pt 1):479-87. PubMed ID: 9461546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation.
    da-Silva WS; Rezende GL; Galina A
    J Exp Bot; 2001 Jun; 52(359):1191-201. PubMed ID: 11432937
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for intracellular spatial separation of hexokinases and fructokinases in tomato plants.
    Damari-Weissler H; Kandel-Kfir M; Gidoni D; Mett A; Belausov E; Granot D
    Planta; 2006 Nov; 224(6):1495-502. PubMed ID: 16977457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of Zn2+-dependent polyol dehydrogenases: kinetic comparison of sheep liver sorbitol dehydrogenase with wild-type and Glu154-->Cys forms of yeast xylitol dehydrogenase.
    Klimacek M; Hellmer H; Nidetzky B
    Biochem J; 2007 Jun; 404(3):421-9. PubMed ID: 17343568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of 1-deoxy-D-fructose, 1-deoxy-D-glucitol, and 1-deoxy-D-minnitol as antimetabolites.
    Dills WL; Meyer WL
    Biochemistry; 1976 Oct; 15(20):4506-12. PubMed ID: 135580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of 3-hexuloses from 1,2:5,6-di-O-isopropylidenehexitols.
    Ekeberg D; Morgenlie S; Stenstrøm Y
    Carbohydr Res; 2001 Sep; 335(2):141-6. PubMed ID: 11567645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism.
    Koivistoinen OM; Richard P; Penttilä M; Ruohonen L; Mojzita D
    FEBS Lett; 2012 Feb; 586(4):378-83. PubMed ID: 22245674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.