These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 20858430)

  • 1. Origin of twist-bend coupling in actin filaments.
    De La Cruz EM; Roland J; McCullough BR; Blanchoin L; Martiel JL
    Biophys J; 2010 Sep; 99(6):1852-60. PubMed ID: 20858430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical heterogeneity favors fragmentation of strained actin filaments.
    De La Cruz EM; Martiel JL; Blanchoin L
    Biophys J; 2015 May; 108(9):2270-81. PubMed ID: 25954884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twist response of actin filaments.
    Bibeau JP; Pandit NG; Gray S; Shatery Nejad N; Sindelar CV; Cao W; De La Cruz EM
    Proc Natl Acad Sci U S A; 2023 Jan; 120(4):e2208536120. PubMed ID: 36656858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Actin Filament Strain Promotes Severing and Cofilin Dissociation.
    Schramm AC; Hocky GM; Voth GA; Blanchoin L; Martiel JL; De La Cruz EM
    Biophys J; 2017 Jun; 112(12):2624-2633. PubMed ID: 28636918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plastic Deformation and Fragmentation of Strained Actin Filaments.
    Schramm AC; Hocky GM; Voth GA; Martiel JL; De La Cruz EM
    Biophys J; 2019 Aug; 117(3):453-463. PubMed ID: 31301801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofilin-linked changes in actin filament flexibility promote severing.
    McCullough BR; Grintsevich EE; Chen CK; Kang H; Hutchison AL; Henn A; Cao W; Suarez C; Martiel JL; Blanchoin L; Reisler E; De La Cruz EM
    Biophys J; 2011 Jul; 101(1):151-9. PubMed ID: 21723825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of extension-torsion coupling of actin filaments.
    Matsushita S; Inoue Y; Adachi T
    Biochem Biophys Res Commun; 2012 Apr; 420(4):710-3. PubMed ID: 22366037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Steered molecular dynamics analysis of the role of cofilin in increasing the flexibility of actin filaments.
    Kim JI; Kwon J; Baek I; Na S
    Biophys Chem; 2016 Nov; 218():27-35. PubMed ID: 27589672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanochemical model of actin filaments.
    Yogurtcu ON; Kim JS; Sun SX
    Biophys J; 2012 Aug; 103(4):719-27. PubMed ID: 22947933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statics and dynamics of the wormlike bundle model.
    Heussinger C; Schüller F; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021904. PubMed ID: 20365592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cofilin increases the bending flexibility of actin filaments: implications for severing and cell mechanics.
    McCullough BR; Blanchoin L; Martiel JL; De la Cruz EM
    J Mol Biol; 2008 Sep; 381(3):550-8. PubMed ID: 18617188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twist-bend coupling and the statistical mechanics of the twistable wormlike-chain model of DNA: Perturbation theory and beyond.
    Nomidis SK; Skoruppa E; Carlon E; Marko JF
    Phys Rev E; 2019 Mar; 99(3-1):032414. PubMed ID: 30999490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-graining provides insights on the essential nature of heterogeneity in actin filaments.
    Fan J; Saunders MG; Voth GA
    Biophys J; 2012 Sep; 103(6):1334-42. PubMed ID: 22995506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The many implications of actin filament helicity.
    Jegou A; Romet-Lemonne G
    Semin Cell Dev Biol; 2020 Jun; 102():65-72. PubMed ID: 31862222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanosensitive kinetic preference of actin-binding protein to actin filament.
    Inoue Y; Adachi T
    Phys Rev E; 2016 Apr; 93():042403. PubMed ID: 27176325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis.
    Akamatsu M; Vasan R; Serwas D; Ferrin MA; Rangamani P; Drubin DG
    Elife; 2020 Jan; 9():. PubMed ID: 31951196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical Stress Decreases the Amplitude of Twisting and Bending Fluctuations of Actin Filaments.
    Okura K; Matsumoto T; Narita A; Tatsumi H
    J Mol Biol; 2023 Nov; 435(22):168295. PubMed ID: 37783285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On Stretching, Bending, Shearing, and Twisting of Actin Filaments I: Variational Models.
    Floyd C; Ni H; Gunaratne RS; Erban R; Papoian GA
    J Chem Theory Comput; 2022 Aug; 18(8):4865-4878. PubMed ID: 35895330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Torsional rigidity of single actin filaments and actin-actin bond breaking force under torsion measured directly by in vitro micromanipulation.
    Tsuda Y; Yasutake H; Ishijima A; Yanagida T
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):12937-42. PubMed ID: 8917522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological transitions of elastic filaments in shear flow.
    Liu Y; Chakrabarti B; Saintillan D; Lindner A; du Roure O
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9438-9443. PubMed ID: 30181295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.