BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2085870)

  • 1. Effect of chronic caloric restriction on the circadian regulation of physiological and behavioral variables in old male B6C3F1 mice.
    Duffy PH; Feuers RJ; Hart RW
    Chronobiol Int; 1990; 7(4):291-303. PubMed ID: 2085870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of chronic caloric restriction on the synchronization of various physiological measures in old female Fischer 344 rats.
    Duffy PH; Feuers R; Nakamura KD; Leakey J; Hart RW
    Chronobiol Int; 1990; 7(2):113-24. PubMed ID: 2242505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-advanced daily rhythms of melatonin, body temperature, and locomotor activity in food-restricted rats fed during daytime.
    Challet E; Pévet P; Vivien-Roels B; Malan A
    J Biol Rhythms; 1997 Feb; 12(1):65-79. PubMed ID: 9104691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic consequences of timed feeding in mice.
    Shamsi NA; Salkeld MD; Rattanatray L; Voultsios A; Varcoe TJ; Boden MJ; Kennaway DJ
    Physiol Behav; 2014 Apr; 128():188-201. PubMed ID: 24534172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The physiologic, neurologic, and behavioral effects of caloric restriction related to aging, disease, and environmental factors.
    Duffy PH; Leakey JE; Pipkin JL; Turturro A; Hart RW
    Environ Res; 1997; 73(1-2):242-8. PubMed ID: 9311553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acute effects of time-of-day-dependent high fat feeding on whole body metabolic flexibility in mice.
    Joo J; Cox CC; Kindred ED; Lashinger LM; Young ME; Bray MS
    Int J Obes (Lond); 2016 Sep; 40(9):1444-51. PubMed ID: 27133618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice.
    Moriya T; Aida R; Kudo T; Akiyama M; Doi M; Hayasaka N; Nakahata N; Mistlberger R; Okamura H; Shibata S
    Eur J Neurosci; 2009 Apr; 29(7):1447-60. PubMed ID: 19519629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-restricted feeding entrains daily rhythms of energy metabolism in mice.
    Satoh Y; Kawai H; Kudo N; Kawashima Y; Mitsumoto A
    Am J Physiol Regul Integr Comp Physiol; 2006 May; 290(5):R1276-83. PubMed ID: 16384858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of intermittent fasting on circadian rhythms in mice depends on feeding time.
    Froy O; Chapnik N; Miskin R
    Mech Ageing Dev; 2009 Mar; 130(3):154-60. PubMed ID: 19041664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-lived alphaMUPA transgenic mice exhibit pronounced circadian rhythms.
    Froy O; Chapnik N; Miskin R
    Am J Physiol Endocrinol Metab; 2006 Nov; 291(5):E1017-24. PubMed ID: 16787960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily cycles in body temperature, metabolic rate, and substrate utilization in pigeons: influence of amount and timing of food consumption.
    Rashotte ME; Basco PS; Henderson RP
    Physiol Behav; 1995 Apr; 57(4):731-46. PubMed ID: 7777611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Food anticipatory activity and photic entrainment in food-restricted BALB/c mice.
    Holmes MM; Mistlberger RE
    Physiol Behav; 2000 Mar; 68(5):655-66. PubMed ID: 10764895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The suprachiasmatic nuclei are involved in determining circadian rhythms during restricted feeding.
    Froy O; Chapnik N; Miskin R
    Neuroscience; 2008 Sep; 155(4):1152-9. PubMed ID: 18674595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chronic caloric restriction on physiological variables related to energy metabolism in the male Fischer 344 rat.
    Duffy PH; Feuers RJ; Leakey JA; Nakamura K; Turturro A; Hart RW
    Mech Ageing Dev; 1989 May; 48(2):117-33. PubMed ID: 2661930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two strategies for coping with food shortage in desert golden spiny mice.
    Gutman R; Yosha D; Choshniak I; Kronfeld-Schor N
    Physiol Behav; 2007 Jan; 90(1):95-102. PubMed ID: 17045622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice.
    Mendoza J; Pévet P; Challet E
    Eur J Neurosci; 2007 Jun; 25(12):3691-701. PubMed ID: 17610588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle.
    Mendoza J; Graff C; Dardente H; Pevet P; Challet E
    J Neurosci; 2005 Feb; 25(6):1514-22. PubMed ID: 15703405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interrelations among feeding, circadian rhythms and ageing.
    Froy O; Miskin R
    Prog Neurobiol; 2007 Jun; 82(3):142-50. PubMed ID: 17482337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chronic caloric restriction on hepatic enzymes of intermediary metabolism in aged B6C3F1 female mice.
    Feuers RJ; Leakey JE; Duffy PH; Hart RW; Scheving LE
    Prog Clin Biol Res; 1990; 341B():177-85. PubMed ID: 2217309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complex interaction between circadian rhythm and diet on bile acid homeostasis in male rats.
    Eggink HM; Oosterman JE; de Goede P; de Vries EM; Foppen E; Koehorst M; Groen AK; Boelen A; Romijn JA; la Fleur SE; Soeters MR; Kalsbeek A
    Chronobiol Int; 2017; 34(10):1339-1353. PubMed ID: 29028359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.