BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20859509)

  • 1. Effects of plasma viscosity modulation on cardiac function during moderate hemodilution.
    Chatpun S; Cabrales P
    Asian J Transfus Sci; 2010 Jul; 4(2):102-8. PubMed ID: 20859509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on cardiac function of a novel low viscosity plasma expander based on polyethylene glycol conjugated albumin.
    Chatpun S; Cabrales P
    Minerva Anestesiol; 2011 Jul; 77(7):704-14. PubMed ID: 21709658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving cardiac function with new-generation plasma volume expanders.
    Chatpun S; Nacharaju P; Cabrales P
    Am J Emerg Med; 2013 Jan; 31(1):54-63. PubMed ID: 22867830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide synthase inhibition attenuates cardiac response to hemodilution with viscogenic plasma expander.
    Chatpun S; Cabrales P
    Korean Circ J; 2014 Mar; 44(2):105-12. PubMed ID: 24653740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac mechanoenergetic cost of elevated plasma viscosity after moderate hemodilution.
    Chatpun S; Cabrales P
    Biorheology; 2010; 47(3-4):225-37. PubMed ID: 21084746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of cardiac endothelial nitric oxide synthase to plasma viscosity modulation in acute isovolemic hemodilution.
    Kanokwiroon K; Chatpun S
    Asian J Transfus Sci; 2014 Jul; 8(2):100-4. PubMed ID: 25161348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasma expander viscosity effects on red cell-free layer thickness after moderate hemodilution.
    Yalcin O; Wang Q; Johnson PC; Palmer AF; Cabrales P
    Biorheology; 2011; 48(5):277-91. PubMed ID: 22433569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamics and tissue oxygenation after hemodilution with ultrahigh molecular weight polymerized albumin.
    Castro C; Ortiz D; Palmer AF; Cabrales P
    Minerva Anestesiol; 2014 May; 80(5):537-46. PubMed ID: 24280809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.
    Sriram K; Tsai AG; Cabrales P; Meng F; Acharya SA; Tartakovsky DM; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(12):H2489-97. PubMed ID: 22505638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Survival time in severe hemorrhagic shock after perioperative hemodilution is longer with PEG-conjugated human serum albumin than with HES 130/0.4: a microvascular perspective.
    Martini J; Cabrales P; K A; Acharya SA; Intaglietta M; Tsai AG
    Crit Care; 2008; 12(2):R54. PubMed ID: 18423033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extreme hemodilution with PEG-hemoglobin vs. PEG-albumin.
    Cabrales P; Tsai AG; Winslow RM; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2392-400. PubMed ID: 16024576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions.
    Cabrales P; Tsai AG
    Am J Physiol Heart Circ Physiol; 2006 Nov; 291(5):H2445-52. PubMed ID: 16731641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alginate plasma expander maintains perfusion and plasma viscosity during extreme hemodilution.
    Cabrales P; Tsai AG; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1708-16. PubMed ID: 15591096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microvascular pressure and functional capillary density in extreme hemodilution with low- and high-viscosity dextran and a low-viscosity Hb-based O2 carrier.
    Cabrales P; Tsai AG; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H363-73. PubMed ID: 14975932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subcutaneous microvascular responses to hemodilution with a red cell substitute consisting of polyethyleneglycol-modified vesicles encapsulating hemoglobin.
    Sakai H; Tsai AG; Kerger H; Park SI; Takeoka S; Nishide H; Tsuchida E; Intaglietta M
    J Biomed Mater Res; 1998 Apr; 40(1):66-78. PubMed ID: 9511100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blood viscosity maintains microvascular conditions during normovolemic anemia independent of blood oxygen-carrying capacity.
    Cabrales P; Martini J; Intaglietta M; Tsai AG
    Am J Physiol Heart Circ Physiol; 2006 Aug; 291(2):H581-90. PubMed ID: 16517943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings.
    Salazar Vázquez BY; Martini J; Chávez Negrete A; Cabrales P; Tsai AG; Intaglietta M
    Biorheology; 2009; 46(3):167-79. PubMed ID: 19581725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of plasma expander viscosity on the cell free layer.
    Hightower CM; Yalcin O; Vázquez BY; Johnson PC; Intaglietta M
    Biorheology; 2011; 48(2):115-25. PubMed ID: 21811016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEG-albumin plasma expansion increases expression of MCP-1 evidencing increased circulatory wall shear stress: an experimental study.
    Hightower CM; Salazar Vázquez BY; Acharya SA; Subramaniam S; Intaglietta M
    PLoS One; 2012; 7(6):e39111. PubMed ID: 22720043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systemic and renal hemodynamics after moderate hemodilution with HbOCs in anesthetized rabbits.
    Caron A; Menu P; Faivre-Fiorina B; Labrude P; Alayash A; Vigneron C
    Am J Physiol Heart Circ Physiol; 2000 Jun; 278(6):H1974-83. PubMed ID: 10843896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.