These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Drag force acting on a neuromast in the fish lateral line trunk canal. II. Analytical modelling of parameter dependencies. Humphrey JA J R Soc Interface; 2009 Jul; 6(36):641-53. PubMed ID: 18926966 [TBL] [Abstract][Full Text] [Related]
23. Morphological and Molecular Characterization of Some Peritrichs (Ciliophora: Peritrichida) from Tank Bromeliads, Including Two New Genera: Orborhabdostyla and Vorticellides. Foissner W; Blake N; Wolf K; Breiner HW; Stoeck T Acta Protozool; 2010 Jan; 48(4):291-319. PubMed ID: 20890465 [TBL] [Abstract][Full Text] [Related]
24. An optofluidic "tweeze-and-drag" cell stretcher in a microfluidic channel. Yao Z; Kwan CC; Poon AW Lab Chip; 2020 Feb; 20(3):601-613. PubMed ID: 31909404 [TBL] [Abstract][Full Text] [Related]
25. Cloning and expression of a cDNA encoding a Vorticella convallaria spasmin: an EF-hand calcium-binding protein. Maciejewski JJ; Vacchiano EJ; McCutcheon SM; Buhse HE J Eukaryot Microbiol; 1999; 46(2):165-73. PubMed ID: 10361738 [TBL] [Abstract][Full Text] [Related]
26. 3D simulations of hydrodynamic drag forces on two porous spheres moving along their centerline. Wu RM; Lin MH; Lin HY; Hsu RY J Colloid Interface Sci; 2006 Sep; 301(1):227-35. PubMed ID: 16730016 [TBL] [Abstract][Full Text] [Related]
27. Enhanced viscoelastic focusing of particle in microchannel. Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948 [TBL] [Abstract][Full Text] [Related]
28. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742 [TBL] [Abstract][Full Text] [Related]
29. The effects of mechanical loading and changes of length on single guinea-pig ventricular myocytes. White E; Boyett MR; Orchard CH J Physiol; 1995 Jan; 482 ( Pt 1)(Pt 1):93-107. PubMed ID: 7730993 [TBL] [Abstract][Full Text] [Related]
30. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
31. Mechanical behavior of a supported lipid bilayer under external shear forces. Jönsson P; Beech JP; Tegenfeldt JO; Höök F Langmuir; 2009 Jun; 25(11):6279-86. PubMed ID: 19408897 [TBL] [Abstract][Full Text] [Related]
32. Lift, drag and added mass of a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow. Legendre D; Colin C; Coquard T Philos Trans A Math Phys Eng Sci; 2008 Jun; 366(1873):2233-48. PubMed ID: 18348971 [TBL] [Abstract][Full Text] [Related]
33. Structures linking the myonemes, endoplasmic reticulum, and surface membranes in the contractile ciliate Vorticella. Allen RD J Cell Biol; 1973 Feb; 56(2):559-79. PubMed ID: 4630196 [TBL] [Abstract][Full Text] [Related]
34. Burrow ventilation in the tube-dwelling shimp Callianassa subterranea (Decapoda: thalassinidea). III. Hydrodynamic modelling and the energetics of pleopod pumping. Stamhuis EJ; Videler JJ J Exp Biol; 1998 Jul; 201(Pt 14):2171-81. PubMed ID: 9639591 [TBL] [Abstract][Full Text] [Related]
35. Computational fluid dynamics based Taguchi analysis on shear stress in microfluidic cerebrovascular channels. Garud KS; Jeong S; Lee MY Int J Numer Method Biomed Eng; 2023 Jul; 39(7):e3733. PubMed ID: 37221673 [TBL] [Abstract][Full Text] [Related]
36. Comparison of electromyographic activity during eccentrically versus concentrically loaded isometric contractions. Garner JC; Blackburn T; Weimar W; Campbell B J Electromyogr Kinesiol; 2008 Jun; 18(3):466-71. PubMed ID: 17257859 [TBL] [Abstract][Full Text] [Related]
37. Quantifying the force in flow-cell based single-molecule stretching experiments. Liang J; Li J; Zhong Z; Rujiralai T; Ma J Nanoscale; 2021 Oct; 13(37):15916-15927. PubMed ID: 34522927 [TBL] [Abstract][Full Text] [Related]
38. In vitro validation of a novel mechanical model for testing the anchorage capacity of pedicle screws using physiological load application. Liebsch C; Zimmermann J; Graf N; Schilling C; Wilke HJ; Kienle A J Mech Behav Biomed Mater; 2018 Jan; 77():578-585. PubMed ID: 29096123 [TBL] [Abstract][Full Text] [Related]