These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 20859642)

  • 1. Unusual development of light-reflecting pigment cells in intact and regenerating tail in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2010 Oct; 342(1):53-66. PubMed ID: 20859642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Cell Tissue Res; 2015 Sep; 361(3):733-44. PubMed ID: 25715760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unusual leucophore-like cells specifically appear in the lineage of melanophores in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T
    Pigment Cell Res; 2004 Jun; 17(3):252-61. PubMed ID: 15140070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative ultrastructural and physiological study on melanophores of wild-type and periodic albino mutants of Xenopus laevis.
    Seldenrijk R; Huijsman KG; Heussen AM; van de Veerdonk FC
    Cell Tissue Res; 1982; 222(1):1-9. PubMed ID: 6800656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual light-reflecting pigment cells appear in the Xenopus neural tube culture system in the presence of guanosine.
    Fukuzawa T; Kikuchi Y
    Tissue Cell; 2018 Oct; 54():55-58. PubMed ID: 30309510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A developmental analysis of periodic albinism in the amphibian Xenopus laevis.
    Eagleson GW; van der Heijden RA; Roubos EW; Jenks BG
    Gen Comp Endocrinol; 2010 Sep; 168(2):302-6. PubMed ID: 20178802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light modulates the melanophore response to alpha-MSH in Xenopus laevis: an analysis of the signal transduction crosstalk mechanisms involved.
    Isoldi MC; Provencio I; Castrucci AM
    Gen Comp Endocrinol; 2010 Jan; 165(1):104-10. PubMed ID: 19539625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new in vitro melanophore bioassay for MSH using tail-fins of Xenopus tadpoles.
    de Graan PN; Molenaar R; van de Veerdonk FC
    Mol Cell Endocrinol; 1983 Oct; 32(2-3):271-84. PubMed ID: 6642076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium requirement for alpha-MSH action on melanophores: studies with forskolin.
    de Graan PN; van de Kamp AJ; Hup DR; Gispen WH; van de Veerdonk FC
    J Recept Res; 1984; 4(1-6):521-36. PubMed ID: 6098671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. alpha-Melanotropin-induced changes in protein phosphorylation in melanophores.
    de Graan PN; Gispen WH; van de Veerdonk FC
    Mol Cell Endocrinol; 1985 Sep; 42(2):119-25. PubMed ID: 2998904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of pigment transfer between Xenopus laevis melanophores and fibroblasts in vitro and in vivo.
    Aspengren S; Hedberg D; Wallin M
    Pigment Cell Res; 2006 Apr; 19(2):136-45. PubMed ID: 16524429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of melanoblast differentiation in amphibia by alpha-melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor.
    Fukuzawa T; Bagnara JT
    Pigment Cell Res; 1989; 2(3):171-81. PubMed ID: 2549532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation.
    de Rijk EP; Jenks BG; Wendelaar Bonga SE
    Gen Comp Endocrinol; 1990 Jul; 79(1):74-82. PubMed ID: 2162308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and experimental studies on a new pigment mutant in Xenopus laevis.
    Droin A
    J Exp Zool; 1992 Nov; 264(2):196-205. PubMed ID: 1431781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone.
    van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG
    Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further studies on the melanophores of periodic albino mutant of Xenopus laevis.
    Fukuzawa T; Ide H
    J Embryol Exp Morphol; 1986 Feb; 91():65-78. PubMed ID: 3711792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Regeneration of the Skin Pigment System during Larval Development of the Clawed Frog].
    Molchanov AY; Burlakova OV; Golichenkov VA
    Ontogenez; 2017; 48(1):84-90. PubMed ID: 30277348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferation in vitro of melanophores from Xenopus laevis.
    Fukuzawa T; Ide H
    J Exp Zool; 1983 May; 226(2):239-44. PubMed ID: 6306135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation.
    Patterson LB; Parichy DM
    PLoS Genet; 2013 May; 9(5):e1003561. PubMed ID: 23737760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Melanophore differentiation in the periodic albino mutant of Xenopus laevis.
    Fukuzawa T; Ide H
    Pigment Cell Res; 1987; 1(3):197-201. PubMed ID: 3508277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.