These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 20859703)

  • 1. Characterization of a defined cellulolytic and xylanolytic bacterial consortium for bioprocessing of cellulose and hemicelluloses.
    Okeke BC; Lu J
    Appl Biochem Biotechnol; 2011 Apr; 163(7):869-81. PubMed ID: 20859703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and molecular characterization of cellulolytic-xylanolytic fungi from surface soil-biomass mixtures from Black Belt sites.
    Okeke BC; Hall RW; Nanjundaswamy A; Thomson MS; Deravi Y; Sawyer L; Prescott A
    Microbiol Res; 2015 Jun; 175():24-33. PubMed ID: 25817459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of coculture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities.
    Teunissen MJ; Kets EP; Op den Camp HJ; Huis in't Veld JH; Vogels GD
    Arch Microbiol; 1992; 157(2):176-82. PubMed ID: 1550443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21.
    Karita S; Nakayama K; Goto M; Sakka K; Kim WJ; Ogawa S
    Biosci Biotechnol Biochem; 2003 Jan; 67(1):183-5. PubMed ID: 12619693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved culturability of cellulolytic rumen bacteria and phylogenetic diversity of culturable cellulolytic and xylanolytic bacteria newly isolated from the bovine rumen.
    Nyonyo T; Shinkai T; Mitsumori M
    FEMS Microbiol Ecol; 2014 Jun; 88(3):528-37. PubMed ID: 24612331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Community dynamics of cellulose-adapted thermophilic bacterial consortia.
    Eichorst SA; Varanasi P; Stavila V; Zemla M; Auer M; Singh S; Simmons BA; Singer SW
    Environ Microbiol; 2013 Sep; 15(9):2573-87. PubMed ID: 23763762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xylanases of Bacillus spp. isolated from ruminant dung as potential accessory enzymes for agro-waste saccharification.
    Thite VS; Nerurkar AS
    Lett Appl Microbiol; 2015 May; 60(5):456-66. PubMed ID: 25645626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed submerged fermentation with two filamentous fungi for cellulolytic and xylanolytic enzyme production.
    Garcia-Kirchner O; Muñoz-Aguilar M; Pérez-Villalva R; Huitrón-Vargas C
    Appl Biochem Biotechnol; 2002; 98-100():1105-14. PubMed ID: 12018234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellulolytic and xylanolytic potential of high β-glucosidase-producing Trichoderma from decaying biomass.
    Okeke BC
    Appl Biochem Biotechnol; 2014 Oct; 174(4):1581-1598. PubMed ID: 25129039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Community composition and cellulase activity of cellulolytic bacteria from forest soils planted with broad-leaved deciduous and evergreen trees.
    Yang JK; Zhang JJ; Yu HY; Cheng JW; Miao LH
    Appl Microbiol Biotechnol; 2014 Feb; 98(3):1449-58. PubMed ID: 23893311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation, screening, and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemongrass leaves.
    Ang SK; Yahya A; Abd Aziz S; Md Salleh M
    Prep Biochem Biotechnol; 2015; 45(3):279-305. PubMed ID: 24960316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paenibacillus curdlanolyticus strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides.
    Pason P; Kyu KL; Ratanakhanokchai K
    Appl Environ Microbiol; 2006 Apr; 72(4):2483-90. PubMed ID: 16597947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the biomass hydrolysis potential in bacterial isolates from a volcanic environment: biosynthesis of the corresponding activities.
    Stathopoulou PM; Galanopoulou AP; Anasontzis GE; Karagouni AD; Hatzinikolaou DG
    World J Microbiol Biotechnol; 2012 Sep; 28(9):2889-902. PubMed ID: 22806730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-fermentation of cellulose/xylan using engineered industrial yeast strain OC-2 displaying both β-glucosidase and β-xylosidase.
    Saitoh S; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2011 Sep; 91(6):1553-9. PubMed ID: 21643701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil.
    Lara CA; Santos RO; Cadete RM; Ferreira C; Marques S; Gírio F; Oliveira ES; Rosa CA; Fonseca C
    Antonie Van Leeuwenhoek; 2014 Jun; 105(6):1107-19. PubMed ID: 24748334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a new β-glucosidase/β-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis).
    Mattéotti C; Haubruge E; Thonart P; Francis F; De Pauw E; Portetelle D; Vandenbol M
    FEMS Microbiol Lett; 2011 Jan; 314(2):147-57. PubMed ID: 21114521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finding stable cellulase and xylanase: evaluation of the synergistic effect of pH and temperature.
    Farinas CS; Loyo MM; Baraldo A; Tardioli PW; Neto VB; Couri S
    N Biotechnol; 2010 Dec; 27(6):810-5. PubMed ID: 20937420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexpression of a β-d-Xylosidase from Thermotoga maritima and a Family 10 Xylanase from Acidothermus cellulolyticus Significantly Improves the Xylan Degradation Activity of the Caldicellulosiruptor bescii Exoproteome.
    Kim SK; Russell J; Cha M; Himmel ME; Bomble YJ; Westpheling J
    Appl Environ Microbiol; 2021 Jun; 87(14):e0052421. PubMed ID: 33990300
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation and cultivation of xylanolytic and cellulolytic Sarocladium kiliense and Trichoderma virens from the gut of the termite Reticulitermes santonensis.
    Tarayre C; Bauwens J; Brasseur C; Mattéotti C; Millet C; Guiot PA; Destain J; Vandenbol M; Portetelle D; De Pauw E; Haubruge E; Francis F; Thonart P
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4369-82. PubMed ID: 25300185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative metagenomic analysis of microcosm structures and lignocellulolytic enzyme systems of symbiotic biomass-degrading consortia.
    Wongwilaiwalin S; Laothanachareon T; Mhuantong W; Tangphatsornruang S; Eurwilaichitr L; Igarashi Y; Champreda V
    Appl Microbiol Biotechnol; 2013 Oct; 97(20):8941-54. PubMed ID: 23381385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.