These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20859782)

  • 21. Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach.
    Ishima R; Torchia DA
    J Biomol NMR; 2003 Mar; 25(3):243-8. PubMed ID: 12652136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using T
    Monaretto T; Montrazi ET; Moraes TB; Souza AA; Rondeau-Mouro C; Colnago LA
    J Magn Reson; 2020 Feb; 311():106666. PubMed ID: 31846810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 15N relaxation study of the cold shock protein CspB at various solvent viscosities.
    Zeeb M; Jacob MH; Schindler T; Balbach J
    J Biomol NMR; 2003 Nov; 27(3):221-34. PubMed ID: 12975582
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Backbone dynamics of (1-71)- and (1-36)bacterioopsin studied by two-dimensional (1)H- (15)N NMR spectroscopy.
    Orekhov VY; Pervushin KV; Korzhnev DM; Arseniev AS
    J Biomol NMR; 1995 Sep; 6(2):113-22. PubMed ID: 22910799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CPMG relaxation dispersion NMR experiments measuring glycine 1H alpha and 13C alpha chemical shifts in the 'invisible' excited states of proteins.
    Vallurupalli P; Hansen DF; Lundström P; Kay LE
    J Biomol NMR; 2009 Sep; 45(1-2):45-55. PubMed ID: 19319480
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Probing the Broad Time Scale and Heterogeneous Conformational Dynamics in the Catalytic Core of the Arf-GAP ASAP1 via Methyl Adiabatic Relaxation Dispersion.
    Chao FA; Li Y; Zhang Y; Byrd RA
    J Am Chem Soc; 2019 Jul; 141(30):11881-11891. PubMed ID: 31293161
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Backbone dynamics of the human CC chemokine eotaxin: fast motions, slow motions, and implications for receptor binding.
    Crump MP; Spyracopoulos L; Lavigne P; Kim KS; Clark-lewis I; Sykes BD
    Protein Sci; 1999 Oct; 8(10):2041-54. PubMed ID: 10548050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CPMG relaxation dispersion.
    Ishima R
    Methods Mol Biol; 2014; 1084():29-49. PubMed ID: 24061914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Existence of Singularities in NMR Relaxation Dispersion Profiles: Implications for Hidden Dynamics.
    Chao FA; Byrd RA
    J Am Chem Soc; 2024 Sep; 146(35):24467-24475. PubMed ID: 39172084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of methyl groups in proteins as studied by proton-detected 13C NMR spectroscopy. Application to the leucine residues of staphylococcal nuclease.
    Nicholson LK; Kay LE; Baldisseri DM; Arango J; Young PE; Bax A; Torchia DA
    Biochemistry; 1992 Jun; 31(23):5253-63. PubMed ID: 1606149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Lipari-Szabo Model-Free Analysis as a Method for Study of Molecular Motion in Solid State Heteronuclear Systems Using NMR Off-Resonance.
    Woźniak-Braszak A; Jurga K; Baranowski M
    Appl Magn Reson; 2016; 47():567-574. PubMed ID: 27340336
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Carbonyl carbon transverse relaxation dispersion measurements and ms-micros timescale motion in a protein hydrogen bond network.
    Ishima R; Baber J; Louis JM; Torchia DA
    J Biomol NMR; 2004 Jun; 29(2):187-98. PubMed ID: 15014232
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Backbone dynamics, amide hydrogen exchange, and resonance assignments of the DNA methylphosphotriester repair domain of Escherichia coli Ada using NMR.
    Habazettl J; Myers LC; Yuan F; Verdine GL; Wagner G
    Biochemistry; 1996 Jul; 35(29):9335-48. PubMed ID: 8755711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carr-Purcell sequences with composite pulses.
    Hürlimann MD
    J Magn Reson; 2001 Sep; 152(1):109-23. PubMed ID: 11531370
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reconstructing NMR spectra of "invisible" excited protein states using HSQC and HMQC experiments.
    Skrynnikov NR; Dahlquist FW; Kay LE
    J Am Chem Soc; 2002 Oct; 124(41):12352-60. PubMed ID: 12371879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of nano-second internal motion and determination of overall tumbling times independent of the time scale of internal motion in proteins from NMR relaxation data.
    Larsson G; Martinez G; Schleucher J; Wijmenga SS
    J Biomol NMR; 2003 Dec; 27(4):291-312. PubMed ID: 14512728
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Divided-evolution-based pulse scheme for quantifying exchange processes in proteins: powerful complement to relaxation dispersion experiments.
    Bouvignies G; Hansen DF; Vallurupalli P; Kay LE
    J Am Chem Soc; 2011 Feb; 133(6):1935-45. PubMed ID: 21244030
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution conformation and dynamics of an extracellular polysaccharide isolated from Bradyrhyzobium as deduced from 1H-NMR off resonance ROESY and 13C-NMR relaxation measurements.
    Poveda A; Santamaría M; Bernabé M; Rivera A; Corzo J; Jiménez-Barbero J
    Carbohydr Res; 1997 Nov; 304(3-4):219-28. PubMed ID: 9468627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dependence of transverse relaxation time T2 of biologic tissues on the interpulse delay time in Carr-Purcell-Meiboom-Gill (CPMG) measurements.
    Shioya S; Kurita D; Haida M; Fukuzaki M; Tanigaki T; Kutsuzawa T; Ohta Y
    Tokai J Exp Clin Med; 1997 May; 22(2):27-31. PubMed ID: 9608628
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The interpretation of multi-exponential water proton transverse relaxation in the human and porcine eye lens.
    Moffat BA; Pope JM
    Magn Reson Imaging; 2002 Jan; 20(1):83-93. PubMed ID: 11973033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.