These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 20859967)

  • 1. Glyco-pseudopolyrotaxanes: carbohydrate wheels threaded on a polymer string and their inhibition of bacterial adhesion.
    Kim J; Ahn Y; Park KM; Lee DW; Kim K
    Chemistry; 2010 Oct; 16(40):12168-73. PubMed ID: 20859967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril.
    Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J
    J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes.
    Ke CF; Hou S; Zhang HY; Liu Y; Yang K; Feng XZ
    Chem Commun (Camb); 2007 Aug; (32):3374-6. PubMed ID: 18019503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayer films with nanocontainers: redox-controlled reversible encapsulation of guest molecules.
    Zhang J; Liu Y; Yuan B; Wang Z; Schönhoff M; Zhang X
    Chemistry; 2012 Nov; 18(47):14968-73. PubMed ID: 23112102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Interfacial Adhesion through Cucurbit[n]uril Molecular Recognition.
    Liu J; Tan CSY; Scherman OA
    Angew Chem Int Ed Engl; 2018 Jul; 57(29):8854-8858. PubMed ID: 29663607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular inclusion-based molecular integral rigidity: a feasible strategy for controlling the structural connectivity of uranyl polyrotaxane networks.
    Mei L; Wang L; Yuan LY; An SW; Zhao YL; Chai ZF; Burns PC; Shi WQ
    Chem Commun (Camb); 2015 Aug; 51(60):11990-3. PubMed ID: 26121567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
    Belitsky JM; Nelson A; Stoddart JF
    Org Biomol Chem; 2006 Jan; 4(2):250-6. PubMed ID: 16391767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cucurbit[8]uril rotaxanes.
    Ramalingam V; Urbach AR
    Org Lett; 2011 Sep; 13(18):4898-901. PubMed ID: 21846094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivalent interactions between lectins and supramolecular complexes: Galectin-1 and self-assembled pseudopolyrotaxanes.
    Belitsky JM; Nelson A; Hernandez JD; Baum LG; Stoddart JF
    Chem Biol; 2007 Oct; 14(10):1140-51. PubMed ID: 17961826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyrotaxane-based biointerfaces with dynamic biomaterial functions.
    Arisaka Y; Yui N
    J Mater Chem B; 2019 Apr; 7(13):2123-2129. PubMed ID: 32073570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of molecular mobility of supramolecular polymer surfaces on fibroblast adhesion.
    Seo JH; Yui N
    Biomaterials; 2013 Jan; 34(1):55-63. PubMed ID: 23079667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directing stem cell differentiation by changing the molecular mobility of supramolecular surfaces.
    Seo JH; Kakinoki S; Yamaoka T; Yui N
    Adv Healthc Mater; 2015 Jan; 4(2):215-22. PubMed ID: 25044544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes.
    Angelos S; Yang YW; Patel K; Stoddart JF; Zink JI
    Angew Chem Int Ed Engl; 2008; 47(12):2222-6. PubMed ID: 18275057
    [No Abstract]   [Full Text] [Related]  

  • 15. Influence of Molecular Structure on the In Vivo Performance of Flexible Rod Polyrotaxanes.
    Collins CJ; Mondjinou Y; Loren B; Torregrosa-Allen S; Simmons CJ; Elzey BD; Ayat N; Lu ZR; Thompson D
    Biomacromolecules; 2016 Sep; 17(9):2777-86. PubMed ID: 27387820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers.
    Sankaran S; van Weerd J; Voskuhl J; Karperien M; Jonkheijm P
    Small; 2015 Dec; 11(46):6187-96. PubMed ID: 26469773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic multimeric heptyl mannosides as potent antiadhesives of uropathogenic Escherichia coli.
    Gouin SG; Wellens A; Bouckaert J; Kovensky J
    ChemMedChem; 2009 May; 4(5):749-55. PubMed ID: 19343765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cucurbit[7]uril on enzymatic activity.
    Hennig A; Ghale G; Nau WM
    Chem Commun (Camb); 2007 Apr; (16):1614-6. PubMed ID: 17530077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular gold nanoparticle-polymer composites formed in water with cucurbit[8]uril.
    Coulston RJ; Jones ST; Lee TC; Appel EA; Scherman OA
    Chem Commun (Camb); 2011 Jan; 47(1):164-6. PubMed ID: 20842297
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic vs thermodynamic self-sorting of cucurbit[6]uril, cucurbit[7]uril, and a spermine derivative.
    Masson E; Lu X; Ling X; Patchell DL
    Org Lett; 2009 Sep; 11(17):3798-801. PubMed ID: 19670907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.