BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 20860051)

  • 1. Revisiting an old friend: manganese-based MRI contrast agents.
    Pan D; Caruthers SD; Senpan A; Schmieder AH; Wickline SA; Lanza GM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(2):162-73. PubMed ID: 20860051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manganese-based MRI contrast agents: past, present and future.
    Pan D; Schmieder AH; Wickline SA; Lanza GM
    Tetrahedron; 2011 Nov; 67(44):8431-8444. PubMed ID: 22043109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)?
    Neuwelt EA; Hamilton BE; Varallyay CG; Rooney WR; Edelman RD; Jacobs PM; Watnick SG
    Kidney Int; 2009 Mar; 75(5):465-74. PubMed ID: 18843256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paramagnetic and Superparamagnetic Inorganic Nanoparticles for T1-Weighted Magnetic Resonance Imaging.
    Zeng L; Wu D; Zou R; Chen T; Zhang J; Wu A
    Curr Med Chem; 2018; 25(25):2970-2986. PubMed ID: 28292235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current advancement in the development of manganese complexes as magnetic resonance imaging probes.
    Daksh S; Kaul A; Deep S; Datta A
    J Inorg Biochem; 2022 Dec; 237():112018. PubMed ID: 36244313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paramagnetic inorganic nanoparticles as T1 MRI contrast agents.
    Lee SH; Kim BH; Na HB; Hyeon T
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2014; 6(2):196-209. PubMed ID: 24123961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of manganese-based nanoparticles as contrast probes for magnetic resonance imaging.
    Zhen Z; Xie J
    Theranostics; 2012; 2(1):45-54. PubMed ID: 22272218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot preparation of hydrophilic manganese oxide nanoparticles as T
    Li J; Wu C; Hou P; Zhang M; Xu K
    Biosens Bioelectron; 2018 Apr; 102():1-8. PubMed ID: 29101783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceedingly small iron oxide nanoparticles as positive MRI contrast agents.
    Wei H; Bruns OT; Kaul MG; Hansen EC; Barch M; Wiśniowska A; Chen O; Chen Y; Li N; Okada S; Cordero JM; Heine M; Farrar CT; Montana DM; Adam G; Ittrich H; Jasanoff A; Nielsen P; Bawendi MG
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):2325-2330. PubMed ID: 28193901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Transition from Metal-Based to Metal-Free Contrast Agents for
    Akakuru OU; Iqbal MZ; Saeed M; Liu C; Paunesku T; Woloschak G; Hosmane NS; Wu A
    Bioconjug Chem; 2019 Sep; 30(9):2264-2286. PubMed ID: 31380621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers.
    Wang K; Pan D; Schmieder AH; Senpan A; Hourcade DE; Pham CT; Mitchell LM; Caruthers SD; Cui G; Wickline SA; Shen B; Lanza GM
    Nanomedicine; 2015 Apr; 11(3):601-9. PubMed ID: 25652900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast agents: magnetic resonance.
    Burtea C; Laurent S; Vander Elst L; Muller RN
    Handb Exp Pharmacol; 2008; (185 Pt 1):135-65. PubMed ID: 18626802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new manganese-based oral contrast agent (CMC-001) for liver MRI: pharmacological and pharmaceutical aspects.
    Jørgensen JT; Rief M; Brismar TB; Wagner M; Albiin N
    Acta Radiol; 2012 Sep; 53(7):707-13. PubMed ID: 22821959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxicity of magnetic resonance imaging agents: small molecule and nanoparticle.
    Chang Y; Lee GH; Kim TJ; Chae KS
    Curr Top Med Chem; 2013; 13(4):434-45. PubMed ID: 23432006
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents.
    Estelrich J; Sánchez-Martín MJ; Busquets MA
    Int J Nanomedicine; 2015; 10():1727-41. PubMed ID: 25834422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model.
    Flacke S; Allen JS; Chia JM; Wible JH; Periasamy MP; Adams MD; Adzamli IK; Lorenz CH
    Radiology; 2003 Mar; 226(3):731-8. PubMed ID: 12601183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendrimer-based nanosized MRI contrast agents.
    Kobayashi H; Brechbiel MW
    Curr Pharm Biotechnol; 2004 Dec; 5(6):539-49. PubMed ID: 15579043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of gadolinium in nanostructure for contrast enhanced-magnetic resonance imaging.
    Marasini R; Thanh Nguyen TD; Aryal S
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jan; 12(1):e1580. PubMed ID: 31486295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of metal ions on endogenous melanin nanoparticles used as magnetic resonance imaging contrast agents.
    Chen A; Sun J; Liu S; Li L; Peng X; Ma L; Zhang R
    Biomater Sci; 2020 Jan; 8(1):379-390. PubMed ID: 31728481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Association of gadolinium based magnetic resonance imaging contrast agents and nephrogenic systemic fibrosis.
    Bhave G; Lewis JB; Chang SS
    J Urol; 2008 Sep; 180(3):830-5; discussion 835. PubMed ID: 18635232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.