These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 20860734)

  • 1. Metabolic networks, microbial ecology and 'omics' technologies: towards understanding in situ biodegradation processes.
    Vilchez-Vargas R; Junca H; Pieper DH
    Environ Microbiol; 2010 Dec; 12(12):3089-104. PubMed ID: 20860734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in molecular and "-omics" technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites.
    Desai C; Pathak H; Madamwar D
    Bioresour Technol; 2010 Mar; 101(6):1558-69. PubMed ID: 19962886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome analysis and -omics approaches provide new insights into the biodegradation potential of Rhodococcus.
    Zampolli J; Zeaiter Z; Di Canito A; Di Gennaro P
    Appl Microbiol Biotechnol; 2019 Feb; 103(3):1069-1080. PubMed ID: 30554387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Application of "omics" in bioremediation--a review].
    Lv Y; Tian Y; Zheng T
    Wei Sheng Wu Xue Bao; 2011 May; 51(5):579-85. PubMed ID: 21800618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metagenomics: Probing pollutant fate in natural and engineered ecosystems.
    Bouhajja E; Agathos SN; George IF
    Biotechnol Adv; 2016 Dec; 34(8):1413-1426. PubMed ID: 27825829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metagenomic era for biocatalyst identification.
    Fernández-Arrojo L; Guazzaroni ME; López-Cortés N; Beloqui A; Ferrer M
    Curr Opin Biotechnol; 2010 Dec; 21(6):725-33. PubMed ID: 20934867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility.
    Brzeszcz J; Kaszycki P
    Biodegradation; 2018 Aug; 29(4):359-407. PubMed ID: 29948519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era.
    Laczi K; Erdeiné Kis Á; Szilágyi Á; Bounedjoum N; Bodor A; Vincze GE; Kovács T; Rákhely G; Perei K
    Front Microbiol; 2020; 11():590049. PubMed ID: 33304336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogeographical distribution analysis of hydrocarbon degrading and biosurfactant producing genes suggests that near-equatorial biomes have higher abundance of genes with potential for bioremediation.
    Oliveira JS; Araújo WJ; Figueiredo RM; Silva-Portela RCB; de Brito Guerra A; da Silva Araújo SC; Minnicelli C; Carlos AC; de Vasconcelos ATR; Freitas AT; Agnez-Lima LF
    BMC Microbiol; 2017 Jul; 17(1):168. PubMed ID: 28750626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative metagenomic analysis of PAH degradation in soil by a mixed microbial consortium.
    Zafra G; Taylor TD; Absalón AE; Cortés-Espinosa DV
    J Hazard Mater; 2016 Nov; 318():702-710. PubMed ID: 27484946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metagenomic applications in environmental monitoring and bioremediation.
    Techtmann SM; Hazen TC
    J Ind Microbiol Biotechnol; 2016 Oct; 43(10):1345-54. PubMed ID: 27558781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches.
    Cao B; Nagarajan K; Loh KC
    Appl Microbiol Biotechnol; 2009 Nov; 85(2):207-28. PubMed ID: 19730850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocatalytic degradation of pollutants.
    Parales RE; Haddock JD
    Curr Opin Biotechnol; 2004 Aug; 15(4):374-9. PubMed ID: 15296933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system.
    Vilchez-Vargas R; Geffers R; Suárez-Diez M; Conte I; Waliczek A; Kaser VS; Kralova M; Junca H; Pieper DH
    Environ Microbiol; 2013 Apr; 15(4):1016-39. PubMed ID: 22515215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants.
    Jeon CO; Madsen EL
    Curr Opin Biotechnol; 2013 Jun; 24(3):474-81. PubMed ID: 22999827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.
    Fuentes S; Méndez V; Aguila P; Seeger M
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4781-94. PubMed ID: 24691868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX.
    Kabelitz N; Machackova J; Imfeld G; Brennerova M; Pieper DH; Heipieper HJ; Junca H
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):565-77. PubMed ID: 19172262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of biodegradation capacities of environmental microflorae for diesel oil by comprehensive two-dimensional gas chromatography.
    Penet S; Vendeuvre C; Bertoncini F; Marchal R; Monot F
    Biodegradation; 2006 Dec; 17(6):577-85. PubMed ID: 16477350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alicycliphilus: current knowledge and potential for bioremediation of xenobiotics.
    Solís-González CJ; Loza-Tavera H
    J Appl Microbiol; 2019 Jun; 126(6):1643-1656. PubMed ID: 30661281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into environmental bioremediation by microorganisms through functional genomics and proteomics.
    Zhao B; Poh CL
    Proteomics; 2008 Feb; 8(4):874-81. PubMed ID: 18210372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.