These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 20860858)

  • 1. Food security: increasing yield and improving resource use efficiency.
    Parry MA; Hawkesford MJ
    Proc Nutr Soc; 2010 Nov; 69(4):592-600. PubMed ID: 20860858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China.
    Fan M; Shen J; Yuan L; Jiang R; Chen X; Davies WJ; Zhang F
    J Exp Bot; 2012 Jan; 63(1):13-24. PubMed ID: 21963614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breeding technologies to increase crop production in a changing world.
    Tester M; Langridge P
    Science; 2010 Feb; 327(5967):818-22. PubMed ID: 20150489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotechnologies for the management of genetic resources for food and agriculture.
    Lidder P; Sonnino A
    Adv Genet; 2012; 78():1-167. PubMed ID: 22980921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated approach to crop genetic improvement.
    Parry MA; Hawkesford MJ
    J Integr Plant Biol; 2012 Apr; 54(4):250-9. PubMed ID: 22348899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current issues in cereal crop biodiversity.
    Moreta DE; Mathur PN; van Zonneveld M; Amaya K; Arango J; Selvaraj MG; Dedicova B
    Adv Biochem Eng Biotechnol; 2015; 147():1-35. PubMed ID: 24352706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotech crops: imperative for achieving the millenium development goals and sustainability of agriculture in the climate change era.
    Husaini AM; Tuteja N
    GM Crops Food; 2013; 4(1):1-9. PubMed ID: 23160541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Green biotechnology, nanotechnology and bio-fortification: perspectives on novel environment-friendly crop improvement strategies.
    Yashveer S; Singh V; Kaswan V; Kaushik A; Tokas J
    Biotechnol Genet Eng Rev; 2014 Oct; 30(1-2):113-26. PubMed ID: 25598358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emerging Agricultural Biotechnologies for Sustainable Agriculture and Food Security.
    Anderson JA; Gipmans M; Hurst S; Layton R; Nehra N; Pickett J; Shah DM; Souza TL; Tripathi L
    J Agric Food Chem; 2016 Jan; 64(2):383-93. PubMed ID: 26785813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?
    Varshney RK; Bansal KC; Aggarwal PK; Datta SK; Craufurd PQ
    Trends Plant Sci; 2011 Jul; 16(7):363-71. PubMed ID: 21497543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetically engineered crops: their potential use for improvement of human nutrition.
    Yan L; Kerr PS
    Nutr Rev; 2002 May; 60(5 Pt 1):135-41. PubMed ID: 12030276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated soil-crop system management: reducing environmental risk while increasing crop productivity and improving nutrient use efficiency in China.
    Zhang F; Cui Z; Fan M; Zhang W; Chen X; Jiang R
    J Environ Qual; 2011; 40(4):1051-7. PubMed ID: 21712573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Productivity limits and potentials of the principles of conservation agriculture.
    Pittelkow CM; Liang X; Linquist BA; van Groenigen KJ; Lee J; Lundy ME; van Gestel N; Six J; Venterea RT; van Kessel C
    Nature; 2015 Jan; 517(7534):365-8. PubMed ID: 25337882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating crops and livestock in subtropical agricultural systems.
    Wright IA; Tarawali S; Blümmel M; Gerard B; Teufel N; Herrero M
    J Sci Food Agric; 2012 Mar; 92(5):1010-5. PubMed ID: 21769884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global agricultural intensification during climate change: a role for genomics.
    Abberton M; Batley J; Bentley A; Bryant J; Cai H; Cockram J; de Oliveira AC; Cseke LJ; Dempewolf H; De Pace C; Edwards D; Gepts P; Greenland A; Hall AE; Henry R; Hori K; Howe GT; Hughes S; Humphreys M; Lightfoot D; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Tuberosa R; Valliyodan B; Varshney RK; Yano M
    Plant Biotechnol J; 2016 Apr; 14(4):1095-8. PubMed ID: 26360509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible changes to arable crop yields by 2050.
    Jaggard KW; Qi A; Ober ES
    Philos Trans R Soc Lond B Biol Sci; 2010 Sep; 365(1554):2835-51. PubMed ID: 20713388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developing naturally stress-resistant crops for a sustainable agriculture.
    Zhang H; Li Y; Zhu JK
    Nat Plants; 2018 Dec; 4(12):989-996. PubMed ID: 30478360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [How to increase food production?].
    Gahamanyi L
    Imbonezamuryango; 1984 Dec; (4):24-33. PubMed ID: 12267714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Land Use, Yield and Quality Changes of Minor Field Crops: Is There Superseded Potential to Be Reinvented in Northern Europe?
    Peltonen-Sainio P; Jauhiainen L; Lehtonen H
    PLoS One; 2016; 11(11):e0166403. PubMed ID: 27870865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.